Years 5/6

Small Steps Guidance and Examples

Block 2 - Decimals \& Percentages

WhiteRoseMaths

Year 5/6 - Yearly Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
¢	Number - Place Value			Number and Sub	Addition raction	Number - Multiplication and Division			Sta	stics	Measurement: Perimeter, Area and Volume	
¢0	Number - Fractions					Number- Decimals and Percentages				Year 5: Multiplication and Division Year 6: Algebra and Ratio		
흘	Measu Conver	ement: g Units		Geometry: Properties of Shape			Investigations					

Overview

Small Steps

Year 5	Year 6
Decimals up to 2 d.p.	
Decimals as fractions (1)	
Decimals as fractions (2)	Three decimal places
Understand thousandths	
Thousands as decimals	
Rounding decimals	Multiply by 10,100 and 1,000
Compare and order decimals	Divide by 10,100 and 1,000
	Multiply decimals by integers
	Divide decimals by integers
	Division to solve problems
	Decimals as fractions

Overview

Small Steps

Year 5	Year 6
Understand percentages	
Percentages as fractions and decimals	Fractions to percentages
Equivalent F.D.P	Equivalent F.D.P
	Percentage of an amount (1)
	Percentage of an amount (2)

Decimals up to 2 d.p

Notes and Guidance

Children use place value counters and a place value grid to make numbers with up to two decimal places.

They read and write decimal numbers and understand the value of each digit.

They show their understanding of place value by partitioning decimal numbers in different ways.

Mathematical Talk

How many ones/tenths/hundredths are in the number?
How do we write this as a decimal? Why?

What is the value of the \qquad in the number \qquad ?

When do we need to use zero as a place holder?

How can we partition decimal numbers in different ways?

Varied Fluency

1 What number is represented on the place value chart?

Ones	! Tenths	Hundredths
	0.1	0.01
0	0.01	2

There are \qquad ones, \qquad tenths and \qquad
 hundredths.
The number is \qquad
Represent these numbers on a place value chart

2 Make these numbers with place value counters and write the value of the underlined digit.
$3.0 .76=0.7+0.06=7$ tenths and 6 hundredths Fill in the missing numbers.
0.76

Decimals up to 2 d.p

Reasoning and Problem Solving

Prove Sally is incorrect by finding at least 3 different ways of partitioning 0.62
$0.62=0.5+0.12$
$0.62=0.4+0.22$
$0.62=0.3+0.32$
$0.62=0.2+0.42$
$0.62=0.1+0.52$
$0.62=0+0.62$

Decimals as Fractions (1)

Notes and Guidance

Children explore the relationship between decimals and fractions. They start with a fraction convert it into a decimal and as they progress, children will see the direct link between fractions and decimals.

Children use their previous knowledge of fractions to aid this process.

Mathematical Talk

What does the whole grid represent?
What can we use to describe the equal parts of the grid (fractions and decimals)

How would you convert a fraction to a decimal?
What does the decimal point mean?
Can the fraction be simplified?
How can you prove that the decimal \qquad and the fraction \qquad are the same?

Varied Fluency

1 What fraction is being shown in both representations? Can you convert this in to a decimal?

is the same as the decimal \qquad
2 If the whole bead string represents one whole, what decimal is represented by the highlighted part? Can you represent this on a 100 square?
-90000000000000000000
(0000000000,3000606000
$00000000000000000000-$
-00000000000906090000

Decimals as Fractions (1)

Reasoning and Problem Solving

Odd one out.

Which of the images below is the odd one out?

Explain why.

Possible answer:
B is the odd one out because it shows $\frac{2}{5}$,
which is $\frac{4}{10}$
The other images
show $\frac{2}{10}$

How many different ways can you complete the part whole model using fractions and decimals?

Can you create another part whole model like the one above for a partner?

Possible answers:

Decimals as Fractions (2)

Notes and Guidance

Children concentrate on more complex decimals numbers e.g. ($0.96,0.03,0.27$) and numbers greater than 1 . They represent them as fractions and as decimals.

Children record the number in multiple representations, including expanded form and in words.

Mathematical Talk

In the number 1.34 what does the 1 represent, what does the 3 represent, what does the 4 represent?
Can we represent this number in a different way, and another, and another?
On the number line, where can we see tenths? Where can we see hundredths?
Tell me another that would come in between c and d as a fraction. Tell me a number that would not come in between c and d.

Varied Fluency

1 Use the models to record equivalent decimals and fractions.

(2) Record the value of a. b. c and d as fraction and as a decimal.

3 Complete the table.

Pictorial Representation	Decimal	Decimal - expanded form	Fraction	Fraction - expanded form	In words
(1) (a)	3.24	$3+0.2+0.04$	$3 \frac{24}{100}$	$3+\frac{2}{10}+\frac{4}{100}$	Three ones, two tenths and four hundredths
(a)	3.01		$3 \frac{1}{100}$		
				$3+\frac{4}{10}+\frac{2}{100}$	
					Two ones, three tenths and two hundredths.

Decimals as Fractions (2)

Reasoning and Problem Solving

List all the possible numbers you can make.

Can you write all the decimals as fractions?

Choose three of the numbers and write them as words.
30.45, 30.54,
40.35, 40.53,
50.43, 50.34
$30 \frac{45}{100}, 30 \frac{54}{100}$,
$40 \frac{35}{100}, 40 \frac{53}{100}$,
$50 \frac{43}{100}, 50 \frac{34}{100}$
\square]:

Understand Thousandths

Notes and Guidance

Children build on previous learning of tenths and hundredths and apply this to understanding thousandths. They convert decimals to fractions.

Children develop their knowledge of exchange and apply it to the concept of decimals. For example 3 tenths $=30$ hundredths = 300 thousandths)

Mathematical Talk

How many tenths are in a whole?
How many hundredths are there in 10 tenths?
How many thousandths are there in 2 tenths?
How many different ways can this number be written?

Are seven hundredths equal to seven tenths? Why?

Varied Fluency

1 Use the images to help you fill in the third model and the blanks.

hundredths \square
\qquad
$=$ te

\qquad thousandths

2 June is converting decimals to thousandths
$0.345=\frac{\square}{1000}$

Use June's method to convert the decimals to thousandths
0.276
0.029

Understand Thousandths

Reasoning and Problem Solving

Tim thinks the 2 values below are equal.

Do you agree?
Explain your thinking.
Can you write each amount as a decimal and a fraction?

Can you represent Tim's amount in at least three different ways?

Possible answers
$0.135=\frac{1}{10}+\frac{30}{1000}+$
$\frac{5}{1000}$
$0.135=\frac{100}{1000}+\frac{30}{1000}$
$+\frac{5}{1000}$
$0.135=\frac{13}{100}+\frac{5}{1000}$

Three Decimal Places

Notes and Guidance

Children recap their understanding of numbers with up to 3 decimal places. They look at the value of each place value column and describe the columns in words and digits.

Children use concrete resources to investigate exchanging between columns e.g. 3 tenths is the same as 30 hundredths.

Mathematical Talk

How many tenths are in the number? How many hundredths?

Can you make the number on the place value chart?
How many hundredths are the same as 5 tenths?

Varied Fluency

1 Complete the sentences.

There are \qquad ones, \qquad tenths, \qquad hundredths and \qquad thousandths.
The number in digits is \qquad
2 Use counters and a place value chart to make these numbers.

3 Write down the value of the 3 in the following numbers.

$$
\begin{array}{lllll}
0.53 & 362.44 & 739.8 & 0.013 & 3,420.98
\end{array}
$$

Three Decimal Places

Reasoning and Problem Solving

Do you agree?
Explain why.
Tina says that 3.24 can be written as 2 ones, 13 tenths and 4 hundredths.

Do you agree?
How else can you partition 3.24? Think about exchanging between columns.

Possible answer:
I do not agree with
this as the number 4.39 is smaller than the number 4.465 , which has more decimal numbers.

Possible answer:
I disagree; Tina's numbers would make 3.34 rather than 3.24. I can make 3.24 by having 1 one, 22 tenths and 4 hundredths.

Four children are thinking of four
Yvonne: 4.345 different numbers.

4.445

4.345

 3.54Yvonne: "My number has four hundredths."
Alex: "My number has the same amount of ones, tenths and hundredths."
Louise: "My number has more tenths and hundredths than ones."
Emily: "My number has 2 decimal places."

Match each number to the correct child.

Alex: 4.445
Louise: 3.454
Emily: 3.54

Thousandths as Decimals

Notes and Guidance

Children build on their understanding of decimals and start to understand the link between tenths, hundredths and thousandths and write a thousandth as a decimal e.g. 0.001 Children use concrete materials to understand the connection between one tenth, one hundredth, one thousandth.
They will continue to represent decimals in different ways and will also explore deeper connections such as $\frac{100}{1000}$ is the same as $\frac{1}{10}$

Mathematical Talk

What number is represented? How will we show this on the place value chart? How many ones/ tenths/hundredths/thousandths do I have?
What does 0.21 represent? How do we record this as a fraction? How many thousandths do I have?
How can I record this number differently? How will it look in expanded form?
Do we record O in the thousandth column? Why?

Varied Fluency

1 Use the place value chart and counters to represent these numbers as a decimal. Record the numbers as decimal.

2 Estimate the value that each letter is pointing to.

Write your answer as a fraction and a decimal.
Complete the table.

Pictorial Representation	Decimal	Decimal - expanded form	Fraction	Fraction - expanded form	In words
8	4.251	$4+0.2+0.05+0.001$	$4 \frac{251}{1000}$	$4+\frac{2}{10}+\frac{5}{100}+\frac{1}{1000}$	four ones. two tenths five hunderths and one thousandth
8	4.512				
			$4 \frac{25}{1000}$		
				$4+\frac{5}{10}+\frac{1}{1000}$	

Thousandths as Decimals

Reasoning and Problem Solving

Johnny has 8 counters. He makes numbers using the place value chart. At least 3 columns have counters in. What is the largest and the smallest number he can make with 8 counters?

Can you record the numbers in a different way e.g. as a fraction, decimal, in expanded form?

In this problem decimal numbers have been replaced with symbols. What is the value in each box if:
$=1$
$=1 \quad \sim=\frac{1}{10}$
$\Delta=\frac{1}{100}$
 $=\frac{1}{1000}$

Smallest: 0.116
Largest: 6.11
1.431
2.322

Three children are representing the	Possible answer: number 0.504
They are all correct. Lucinda has recorded it as a fraction. Terry and Sophie have partitioned it differently.	
Who is correct?	
Explain why.	

Rounding Decimals

Notes and Guidance

Children are introduced to numbers with two decimal places and develop their understanding of rounding to the nearest whole number and to the nearest tenth．

Number lines support children to understand where numbers appear in relation to other numbers and are important to developing conceptual understanding of rounding．

Mathematical Talk

What number is represented？
How many decimal places does it have？
When rounding to the nearest one decimal place，how many decimals will the answer have？
Where would 3.25 appear on both number lines？
What is the same and what is different about the two number lines？

Varied Fluency

1 Complete the number lines and round the representations to the nearest whole number：

2 Use the number lines to round 3.24 to the nearest tenth and the nearest whole number．

3 Complete the table and use the number lines to help you round to the nearest tenth and the nearest whole number：

$\begin{aligned} & \text { Pictorial } \\ & \text { representation } \end{aligned}$	Number line	Rounded to the nearest tenth	Number line	Rounded to the nearest whole number
	吅以号吅			
	吅以员北			
	吅山员北可			

Rounding Decimals

Reasoning and Problem Solving

Simon is measuring a box of chocolates with a ruler that measures in \square centimetres and millimetres.	Smallest: 27.5 cm Largest 28.49 cm
He measures it to the nearest cm and writes the answer 28 cm . What is the smallest length the box of chocolates could be? What is the largest length the box of chocolates could be?	
Rounded to the nearest 0.1, A is 3.5 and B is 3.0	A can be between 3.45 and 3.54 B can be between
What is the smallest possible difference between A and B ?	2.95 and 3.04 Smallest difference: 0.41
What is the largest possible difference? Explain your strategy to a partner.	Largest difference: 0.59

$\left.\begin{array}{|l|l|}\hline \text { A number between } 11 \text { and } 20 \text { with } 2 \\ \text { decimal places rounds to the same } \\ \text { number when rounded to one decimal } \\ \text { place and when rounded to the nearest } \\ \text { whole number? }\end{array} \quad \begin{array}{l}\text { The whole number } \\ \text { can range from } 11 \\ \text { to } 19 \text { and the } \\ \text { decimal places can } \\ \text { range from _. } 95 \\ \text { to _.99. }\end{array}\right\}$

Can children

works?

Order and Compare Decimals

Notes and Guidance

Children order and compare numbers with up to three decimal places. They use place value counters to represent the numbers they are comparing.

Number lines support children to understand where numbers appear in relation to other numbers.

Mathematical Talk

What number is represented?
\qquad is greater/less than \qquad because...

Explain how you know.
Can you build the number using place value counters?

Varied Fluency

1 Compare using $<,>$ or $=$

$13.33 \div 10$

2 Place the numbers in ascending order on the number line:

3.115	$3 \frac{113}{1000}$	Three and 11 hundredths

3.11
3.12

3 Order in descending order:
$\begin{array}{llll}\text { • } & 0.123 & 0.321 & 0.231\end{array} 0.103$

- $3.2 \mathrm{~km} 3.21 \mathrm{~km} \quad 3.212 \mathrm{~km} 3202 \mathrm{~m}$
- $65.394 \quad 65.30963 .999 \quad 65.493$

Order and Compare Decimals

Reasoning and Problem Solving

Multiply by 10, 100 and 1,000

Notes and Guidance

Children multiply numbers with up to three decimal places by 10,100 and 1,000
They discover that digits move to the left when they are multiplying and look at when to use zero as a place value holder.
Once children are confident in multiplying by 10, 100 and 1,000 , they use these skills to investigate multiplying by multiples of these numbers. E.g. 2.4×20

Mathematical Talk

What number is represented on the place value chart?
Why is 0 important when multiplying by 10,100 and 1,000 ?
What patterns do you notice?
What is the same and what is different when multiplying by $10,100,1,000$ on the place value chart compared with the Gattegno chart?

Varied Fluency

1 Identify the number represented on the place value chart.

Thousands	Hundreds	Tens	Ones	Tenths	Hundredths

Multiply it by 10, 100 and 1,000 and complete the sentences.
Which direction do the counters move?
When multiplied by \qquad the counters move \qquad places to the \qquad —.

2 Use a place value chart to multiply the following decimals by 10,100 and 1,000

$$
6.46 .046 .004
$$

3 Fill in the missing numbers in these calculations

$$
32.4 \times \square=324 \quad 1.562 \times 1,000=\square
$$

\square $\times 100=208$ \square

Multiply by 10, 100 and 1,000

Reasoning and Problem Solving

Explore what happens when you multiply your number by 10 , then 100 , then 1,000

What patterns do you notice?

Children will be able to see how the counter will move up a row for multiplying by 10, two rows for 100 and three rows for 1,000 . They can see that this happens to each digit regardless of the value.
For example, 3.451×10 becomes 34.51 Each counter moves up a row but stays in the same column.

Do you agree?
Explain your thinking.

Children should explain that when you multiply by 10 the digits move one place to the left, two places to the left when you multiply by 100 and three places to the left when you multiply by 1,000

For example:
$0.34 \times 100=$
0.3400 is incorrect as 0.34 is the
same as 0.3400

Divide by 10, 100 and 1,000

Notes and Guidance

Once children understand how to multiply decimals by 10,100 and 1,000 , they can apply this knowledge to division, then later apply these skills to converting between units of measure.
It is important that children continue to understand the importance of 0 as a place holder. Children also need to be aware that 2.4 and 2.40 are the same, but the zero is not needed in this case.

Mathematical Talk

What happens to the counters/digits when you divide by 10 , 100 or 1000?

Why is the zero important?
What is happening to the value of the digit each time it moves one column to the right?

What is the relationship between tenths, hundredths and thousandths?

Varied Fluency

1 Use the place value chart to divide the following numbers by 10,100 and 1,000

2 Tick the correct answers. Can you explain the mistakes with the incorrect answers?

3
Complete the table.

	$\div 10$	$\div 100$	$\div 1000$
789			
14			
60			
101		2.09	
3			
3 Kg	345.1		

Divide by 10, 100 and 1,000

Reasoning and Problem Solving

Using the following rules, how many ways
can you make 70 ? can you make 70 ?

- Use a number from column A ,
- Use an operation from column B.
- Use number from column C.

A	B		C
0.7	x	\div	0.1
7			1
70			10
700			100
7000			1000

Can you find a path from 6 to 0.6 ?
You cannot make diagonal moves.

6	$\times 10$	$\times 10$	$\div 100$
$\div 10$	$\times 100$	$\times 100$	$\div 10$
$\times 10$	$\div 10$	$\div 1000$	$\div 100$
$\div 1000$	$\times 1000$	$\times 100$	0.06

Is there more than one way?

Possible answers:
0.7×100
7×10
70×1
$700 \div 10$
$7000 \div 100$
$70 \div 1$

Do you agree?
Explain why

Kate is wrong, the decimal point never moves. When dividing, the digits move to the right and each time they move one column to the right they get 10 times smaller.

You cannot just get rid of zeros as
sometimes a
number being
divided by 10, 100
or 1,000 does not have any zeros to begin with e.g. 24

Multiply Decimals by Integers

Notes and Guidance

Children use concrete resources to multiply decimals and explore what happens when you exchange with decimals.

Children use their skills in context and make links to money and measures.

Mathematical Talk

Which is bigger, $0.1,0.01$ or 0.001 . Why?
How many 0.1s do you need to exchange for a whole one?
Can you draw a bar model to represent the problem?
Can you think of another way to multiply by 5 ? (multiply by 10 and divide by 2).

Varied Fluency

1 Use the place value counters to multiply 1.212 by 3 Complete the calculation alongside the concrete

Tens	Ones © Tents		Hundredths	Thousandth
	(1)	(11) (11)	(1)	(3a)
	(1)	(11) (11)	(1)	(20)
	(1)	(1.) (1)	(0)	(3)

2 A jar of sweets weighs 1.23 kg . How much would 4 jars weigh?

3 Jess is saving her pocket money. Her mum says,
"Whatever you save, I will give you five times the amount."
If Jess saves $£ 2.23$, how much will her mum give her?
If Jess saves $£ 7.76$, how much will her mum give her?

Multiply Decimals by Integers

Reasoning and Problem Solving

You need to travel from point A to point B. You can only travel through each point once.

What's the largest product you can make from A to B ?

What's the smallest product you can make from A to B ?

Largest product:
$5 \times 2 \times 2 \times 0.1=2$

Smallest product:
$3 \times 0.5 \times 1 \times 0.1=$
0.15

Divide Decimals by Integers

Notes and Guidance

Children continue to use concrete resources to divide decimals and explore what happens when exchanging with decimals.

Children build on their prior knowledge of sharing and grouping when dividing and apply this skill in context.

Mathematical Talk

Are we grouping or sharing? Explain why. How are these different? How are they the same?

How else could we partition the number 3.69? (For example, 2 ones, 16 tenths and 9 hundredths.)

How could we check that our answer is correct using the inverse? Which method, sharing or grouping, shows the inverse more clearly?

Varied Fluency

1 Divide 3.69 by 3
Can you show this by grouping and by sharing?

Use these methods to complete the sentences.
3 ones divided by 3 is \qquad ones.
6 tenths divided by 3 is \qquad tenths.
9 hundredths divided by 3 is \qquad hundredths.
3.69 divided by 3 is \qquad _.
2 Decide whether you will use grouping or sharing and use the place value chart and counters to solve:

$$
7.55 \div 5=\quad 8.16 \div 3=\quad 3.3 \div 6=
$$

3 Danny solves $6.39 \div 3$ using a part whole method.

Use this method to solve:

- $8.48 \div 2=$
- $6.9 \div 3=$
- $6.12 \div 3=$

Divide Decimals by Integers

Reasoning and Problem Solving

When using the counters to answer 6.27 divided by 3 , this is what Bob did:

Bob says,

Do you agree with what Bob has done? Explain why.

Possible answer: Bob is incorrect because he should have exchanged both of the tenths for 20 hundredths to get an answer of 2.09

Children may explain that you cannot just move one hundredth into the tenths column as in order to exchange hundredths for tenths you need to have ten
hundredths.

C is $\frac{1}{4}$ of A
 $$
B=C+2
$$

Use the clues to complete the division:

Children may try A as 8 and C as 2 but will realise that this cannot complete the whole division.

Therefore A is $4, \mathrm{~B}$ is 3 and C is 1

Division to Solve Problems

Notes and Guidance

Children will apply their understanding to use division to solve problems in cases where the answer has up to 2 decimal places.

Children will continue to show division using place value counters and exchanging where needed.

Mathematical Talk

How can we represent this problem using a bar model?
How will we calculate what this item costs?
How will we use division to solve this?
How will we label our bar model to represent this?

Varied Fluency

1 Mrs Forbes has saved $£ 4,960$
She shares the money between her 15 grandchildren. How much do they each receive?

2 Playdoh is sold in two different shops. Shop A sells four pots of Playdoh for $£ 7.68$ Shop B sells three pots of Playdoh for $£ 5.79$ Which shop has the better deal? Explain your answer.

3 A box of chocolates costs 4 times as much as a chocolate bar.
Together they cost $£ 7.55$

How much does each item cost?
How much more does the box of chocolates cost?

Division to Solve Problems

Reasoning and Problem Solving

"The answer is 36 remainder 3"

Tilly says,

"The answer is 36.75 "

Who do you agree with?

They are both correct.

Tilly has continued to divide into the decimal place value columns whereas Stefan has recorded his as a remainder.

Decimals as Fractions

Notes and Guidance

Children explore the relationship between decimals and fractions. They start with a decimal and use their place value knowledge to help them convert it into a fraction. Children will use their previous knowledge of exchanging between columns, for example, 3 tenths is the same as 30 hundredths. Once children convert from a decimal to a fraction, they simplify the fraction to help to show patterns.

Mathematical Talk

How would you record your answer as a decimal and a fraction? Can you simplify your answer?

How would you convert the tenths to hundredths?
What do you notice about the numbers that can be simplified in the table?

Can you have a unit fraction that is larger than 0.5 ? Why?

Varied Fluency

1 What decimal is shaded?
Can you write this as a fraction?

0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

2 Complete the table.

Decimal	Fraction in Tenths or hundredths	Simplified fraction
0.6	$\frac{6}{10}$	$\frac{3}{5}$
0.92		
0.10 .1		-
0.25		
0.5		

3 Three friends share a pizza. Sam ate 0.25 of the pizza, Mark ate 0.3 of the pizza and Jill ate 0.35 of the pizza.

- Can you write the amount each child ate as a fraction?
- What fraction of the pizza is left?

Decimals as Fractions

Reasoning and Problem Solving

Odd one out.

Which is the odd one out and why?

Possible response:
B is the odd one out because it
represents $\frac{3}{10}$
A represents 0.6 which is the same as 6 tenths or $\frac{6}{10}$

C also shows this.
D represents $\frac{3}{5}$ which is equivalent to $\frac{6}{10}$

Fractions to Decimals (1)

Notes and Guidance

At this point children should know common fractions as decimals, including thirds, quarters, fifths and eighths. Children learn that finding an equivalent fraction where the denominator is 10,100 or 1,000 makes it easier to convert from a fraction to a decimal.
They investigate the most efficient method to convert fractions to decimals, for example, converting twentieths to hundredths or tenths depending on the numerator.

Mathematical Talk

How many tenths are equivalent to one hundredth?
How would you convert a fraction to a decimal?
Which is the most efficient method? Why?

Varied Fluency

1 Match the fractions to the equivalent decimals.

2 Use your knowledge of known fractions to convert the fractions to decimals. Show your method for each one.

$$
\begin{array}{llll}
\frac{7}{20} & \frac{3}{4} & \frac{2}{5} & \frac{6}{200}
\end{array}
$$

(3) Eva says that $\frac{63}{100}$ is less than 0.65

Do you agree with Eva? Explain your answer.

Fractions to Decimals (1)

Reasoning and Problem Solving

Hannah and Alex are converting $\frac{30}{500}$	$\frac{25}{500}$ - divide by 5,
into a decimal	

- Hannah doubles the numerator and denominator, then divides by 10
- Alex divides both the numerator and the denominator by 5
- Both get the answer $\frac{6}{100}=0.06$

Which method would you use to work out each of the following?

$$
\frac{25}{500} \quad \frac{125}{500} \quad \frac{40}{500} \quad \frac{350}{500}
$$

Explain why you have used a certain method.

Fractions to Decimals (2)

Notes and Guidance

It is important that children recognise that $\frac{3}{4}$ is the same as $3 \div 4$. They can use this understanding to find fractions as decimals by then dividing the numerator by the denominator.
In the example provided, we cannot make any equal groups of 5 in the ones column so we have exchanged the 2 ones for 20 tenths. Then we can divide 20 into groups of 5

Mathematical Talk

Do we divide the numerator by the denominator or divide the denominator by the numerator? Explain why.

When do we need to exchange?

Are we grouping or are we sharing? Explain why.

Varied Fluency

(1) Deena has used place value counters to write $\frac{2}{5}$ as a decimal. She has divided the numerator by the

Use this method to convert the fractions to decimals: Give your answers to 2 decimal places.
$\frac{1}{4}$
$\frac{2}{9}$

2 Use the short division method to convert the fractions to decimals.
Write the decimals to three decimal places.

$$
\begin{array}{lll}
\frac{4}{7} & \frac{5}{9} & \frac{5}{6}
\end{array}
$$

38 friends share 7 pizzas.
How much pizza does each person get?
Give your answer as a decimal fraction.

Fractions to Decimals (2)

Reasoning and Problem Solving

Pete shares 6 bananas between some friends.

Each friend gets 0.75 of a banana.
How many friends does he share the bananas with?
Show your method.

Pete shares his 6 bananas between 8 friends because 6 divided by 8 equals 0.75

Children may show their methods in different ways. Method 1: Children add 0.75 until they reach 6 . This may involve spotting that 4 lots of 0.75 equals 3 and then they doubling this to find 8 lots of 0.75 equals 6 . Method 2: Children use their knowledge that 0.75 is equivalent to $\frac{3}{4}$ to find the equivalent fraction of 6

Understand Percentages

Notes and Guidance

Children are introduced to 'per cent' for the first time and will understand that 'per cent' relates to 'number of parts per hundred'.

They will explore this through different representations which show different parts of a hundred. Children will use 'number of parts per hundred' alongside the \% symbol.

Mathematical Talk

How many parts is the square split in to?
How many parts per hundred are shaded/not shaded?
Can we represent this percentage differently?
Look at the bar model, how many parts is it split into? If the bar is worth 100, what is each part worth? How would we say this as a percentage?
In the table, what does the score represent? How many parts per hundred did \qquad score?

Varied Fluency

1 Complete the sentence stems to describe how many parts per hundred are shaded.

2 Complete the table.

There are__ parts per hundred shaded.
This is_\%

Shade in the parts and record the missing information.

Pictorial representation	Parts per hundred	Percentage
	There are 51 parts per hundred	
\# "		75\%

3 Record the percentages shown.

Understand Percentages

Reasoning and Problem Solving

Max, Isla and Ethan all did a test with 100 questions.

- Ethan got 6 less questions correct than Max.

Name	Score	Percentage
Max	56 out of 100	
Isla		65%
Ethan		

Can you complete the table?
How many more marks did each child need to get 100% ?

Jenny and Gurpreet each have 100
sweets.
Jenny eats 65% of hers. Gurpreet has
35 sweets left.
Who has more sweets left?

Name	Score	Percentage
Max	56 out of 100	56%
Isla	65 out of 100	65%
Ethan	50 out of 100	50%

Max needs 44 marks.

Isla needs 35 marks

Ethan needs 50 marks

Neither. They have the same.

\% as Fractions \& Decimals

Notes and Guidance

Children represent percentages as fractions using the denominator 100 and make the connection to decimals and hundredths.

Children will recognise percentages, decimals and fractions are different ways of expressing proportions.

Mathematical Talk

What do you notice about the percentage and the decimal?
What's the same? What's different about percentages, decimals and fractions?

How can we record this proportion as a fraction? How can we turn it into a percentage?

Explain your method.

Varied Fluency

1 Complete the table.

Pictorial representation	Percentage	Fraction	Decimal
	There are 41 parts per hundred 41%	41 out of 100 $\frac{41}{100}$	41 hundredths 0.41
		\qquad out of 100 $\frac{\square}{100}$	__hundredths
H H 	There are 31 parts per hundred 31\%		

2 Kate has read 93 pages of her book. Her book has 300 pages in total. What proportion of her book has she read? Give your answer as a percentage and as a decimal.

$$
\frac{93}{300}=\frac{\square}{100}=\square \%=\square
$$

3 Record the fractions as a percentage and as a decimal.

$$
\begin{array}{lll}
\frac{120}{300} & \frac{320}{400} & \frac{20}{200}
\end{array}
$$

\% as Fractions \& Decimals

Reasoning and Problem Solving

Is Paulo correct? Explain your answer.	Paulo is incorrect, this only works when the
denominator is 100	
because percent	
means per hundred.	

Three children have each read 360 pages of their own book.

Kenny's book has 500 pages.
Lenny's book has 400 pages.
Penny's book has 600 pages.
What fraction of their books have they each read?

How much of their books have they each read as a decimal?

Who has read the most of their book?

Kenny has read
72% or 0.72
Lenny has read 90\% or 0.9

Penny has read 60% or 0.6

Lenny has read the most of his book.

Fractions to Percentages

Notes and Guidance

It is important that children understand that 'percent' means 'out of 100', therefore they will need to use their knowledge of equivalent fractions to make the denominator 100

Children will recall and use equivalences between simple fractions and percentages in different contexts.

Mathematical Talk

What does the word 'percent' mean? How can you represent this?
Which denominator is the easiest to convert into a percentage? Why is this easiest? Which other denominators are easier to convert into percentages?

If the denominator is $50,25,20$ or 10 how would you convert it in to 100 ? What would you need to do to the numerator?

Varied Fluency

1 What fraction of the 100 square is shaded?
Can you write this as a percentage?

Shade in another 100 square to show 50\%
Can you write this as two different fractions?
2 What numbers have been covered by the splats?

3 Complete the table.

Fraction	Fraction in Hundredths	Percentage
$\frac{7}{10}$	$\overline{100}$	
$\underline{7}$	$\frac{35}{100}$	
$\underline{7}$	$\overline{100}$	28%

Fractions to Percentages

Reasoning and Problem Solving

In a Maths test, Tom answered 62% of the questions correctly.	Tom answered more questions correctly because $\frac{3}{5}$
Lily answered $\frac{3}{5}$ of the questions correctly. as a percentage is 60% and this is Who answered more questions correctly? less than 62%	
Explain your answer.	

Equivalent FDP

Notes and Guidance

Children recognise simple equivalent fractions and represent them as decimals and percentages.

Children then solve problems which require knowing percentage and decimal equivalents of
$\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}, \frac{4}{5}$ and those fractions with a denominator of a multiple of 10 or 25

Mathematical Talk

Show these decimals on the bead string. What are they as a decimal? What are they as a fraction? Can you simplify the fraction?

How can we represent the fractions on a number line? What are they equivalent to?

Which is closer to $100 \%, \frac{4}{5}$ or 70% ? How do you know?

Varied Fluency

1 Use a bead string to show me
0.25
0.3
0.2
0.5

What are these decimals as a percentage?
What are they as a fraction? Can you simplify the fraction?
2 Use the bar models to convert the fractions into a percentage and a decimal.

$\frac{1}{2}$ is equivalent to \qquad \& $\frac{1}{4}$ is equivalent to \qquad \& \qquad $\frac{3}{10}$ is equivalent to \qquad \& \qquad $\frac{1}{5}$ is equivalent to \qquad \& \qquad
3 Draw a line to show where each representation goes on a number line.

Equivalent FDP

Reasoning and Problem Solving

Sort the fractions, decimals and
percentages into the correct column.

50%	100%	$\frac{30}{60}$
Seven tenths	60%	0.25
70 hundredths	$\frac{1}{4}$	0.5

Less than $\frac{1}{2}$	Equal to $\frac{1}{2}$	More than $\frac{1}{2}$

Ash has $£ 55$ He spends $\frac{3}{5}$ of his money on a coat and 30% on shoes. How much does he have left?	$\begin{aligned} & \frac{3}{5}=0.6=60 \% \\ & 60 \%+30 \%= \\ & 90 \% \end{aligned}$ Ash has 10\% left and 10% of $£ 55$ is £5.50
Tom is playing a maths game, here are his scores at three different levels.	Level A - 80\% Level B-70\%
Level A - 440 points out of 550	Level C - 50\%
Level B-210 points out of 300 Level C - 45 points out of 90	He had the higher success rate on level A.
At which level did he have a higher success rate?	Children may wish to compare using decimals instead.

Equivalent FDP

Notes and Guidance

Children convert between fractions, decimals and percentages. They use their knowledge of common equivalent fractions and decimals to find the equivalent percentage.

Children start by focusing on converting decimals to fractions and then to percentages. They then look at how a decimal can be multiplied by 100 in order to find the equivalent percentage.

Mathematical Talk

How does converting a decimal to a fraction help us to convert it to a percentage?

When I convert a decimal to a percentage, what do I need to multiply by? Can I use a place value grid to help me convert the decimal to a percentage?

Varied Fluency

1 Complete the table.
Decimal \quad Fraction \quad Percentage

2 Fill in the missing boxes.

3 Complete the table. Can you record the fraction in its simplest form?

Representation		Fraction	Decimal	Percentage
				46%
			0.78	
		$\frac{2}{5}$		

Equivalent FDP

Reasoning and Problem Solving

$$
\begin{aligned}
& \text { Complete the missing information using } \\
& \text { a decimal and a percentage. } \\
& \text { Can you find more than one solution? } \\
& \frac{1}{4}=75 \%-\square-3 \text { tenths } \\
& 40 \%=\frac{1}{5}+\square+\square
\end{aligned}
$$

Complete the part whole model. How many different ways can you complete it?

Can you create your own version with different values?

Possible answers:

1. 0.2 or 20%
2. 0.1 and 10%
0.05 and 15%
0.01 and 19\%
$A=0.3,30 \%$ or $\frac{3}{10}$
$B=0.2,20 \%, \frac{2}{10}$ or
$\frac{1}{5}$
C $=0.1,10 \%$ or $\frac{1}{10}$

Use the digit cards to complete the
Possible answers: missing information.
How many ways can you find?

$$
\begin{aligned}
& \text { (1) } 20456
\end{aligned}
$$

Percentage of an Amount (1)

Notes and Guidance

Children use different representations to find percentages of amounts. For example $50 \%, 25 \%, 10 \%, 1 \%$.
Allow time for children to explore efficiency of methods and develop a deep understanding of why you can divide by ten to find 10%, but you do not divide by 25 to find 25%.
Children need to understand percentages as parts of 100 and that the whole amount is 100%, therefore when finding 1% we divide by 100.

Mathematical Talk

How many other ways could you find 25% ? Which is the most effective?

If you know how to calculate 10\%, how can you use this to calculate 1\%?

What's the same and what's different about 10\% of 300, 30 and 3 ? What do you notice?

Varied Fluency

1 Find 50% of 406
50% is equal to a half so we can divide by 2 to find 50%

2 Complete the sentences:
To find 50\%, I can divide by \qquad
To find 25%, I can divide by \qquad
To find 10%, I can divide by \qquad
To find 1%, I can divide by \qquad
3 Find:

$$
\begin{aligned}
& 10 \% \text { of } 300 \\
& 1 \% \text { of } 500
\end{aligned}
$$

10\% of 30
10% of 3

Percentage of an Amount (1)

Reasoning and Problem Solving

50% of 300	5% of 20	25% of 244
10% of 890	1% of 120,000	50% of 9402
25% of 225,000	10% of 85,610	5% of 600

a) Largest: 146,561
b) Smallest: 153
c) 50% of $300+$ 1% of $120,000+$ 5% of $600=300$

Using the table above,
a) What's the biggest total you can make using only 3 amounts?
b) What's the smallest total you can

50% of 300 150	5% of 20 4	25% of 244 60
10% of 890 89	1% of 120,000 120	50% of 9402 4701
25% of 225,000 56,250	10% of 85,610 85,610	5% of 600 30

c) Can you make exactly 300 ? How?

Percentage of an Amount (2)

Notes and Guidance

Children use concrete resources and visual representations to find compound percentages of amounts.
Allow time for children to explore efficiency of methods when finding any percentage. For example, when finding 20%, children could do:
$20 \%=\frac{20}{100}=\frac{2}{10}=\frac{1}{5}$ then divide the amount by 5 , or they could add two lots of 10%

Mathematical Talk

Why wouldn't the method of finding 10\% of a number first be necessary when calculating 50% ?

Is there a fraction you could use to help you work out 5\%?
Which do you think is the most efficient method? Why?

Varied Fluency

1 If you know how to find 10% of 220 , how could you use this
to find 20% ?

Calculations
 10% of $220=22$
 To find 20%, we multiply 10\% by 2 $22 \times 2=44$

Use this method to find:
(a) 40% of 220
(b) 20% of 180
(c) 30% of 320

2 To find 5% of a number you could: Work out 10% and halve it, OR work out 1% and multiply it by 5
Use these methods to work out:
(a) 5% of 140
(b) 5% of 260
(c) 5% of 1 m 80 cm

Which method do you find the most efficient?
How else could we work out 5\%?
3 Calculate:
(a) 15% of 6 m
(b) 35% of 3 kg
(c) 65% of 2 hours

Percentage of an Amount (2)

Reasoning and Problem Solving

Percentages - Missing Values

Notes and Guidance

Children use their understanding of finding percentages of amounts to find missing values. They may choose to use a bar model to support their understanding and structure their ideas.

It is important that children see that there may be more than one way to solve a problem and that some methods are more efficient than others.

Mathematical Talk

Is there more than one way to solve the problem?
What is the most efficient way to find \qquad \%?

What diagrams could help you visualise this problem?

Varied Fluency

1 If 7 is 10% of a number, what is the number?
Use the bar model to help you.

2 Complete:
Use a bar model to help you if you need.

Can you see a link between the questions?
3 350,000 people visited the Natural History Museum last week.
15\% of people visited on Monday.
40% of people visited on Saturday.
How many people visited the Natural History Museum the rest of the week?

Percentages - Missing Values

Reasoning and Problem Solving

A golf club has 200 members.
58% of the members are male. 50% of the female members are children.
(a) How many male members are in the golf club?
(b) How many female children are in the golf club?

116 male members
42 female children

Percentage Increase \& Decrease

Notes and Guidance

Once children are secure in finding percentages of amounts and missing percentages, they move on to finding percentage increase and decrease.

They use a bar model to represent what increase and decrease will look like.

Mathematical Talk

What does increase/decrease mean?
How does the bar model show the percentage increase/decrease?
If prices increase by 20%, what percentage will represent the new price?

If the percentage decrease is \qquad , how can we work out the original price? What will the new price be?

Varied Fluency

1 Janet is increasing the prices in her café by 20% Calculate the percentage increase for the following items:

2 Use the same models to calculate the new cost for each item.

3 The price of houses has decreased by 10% in the last year. Use a bar model to represent the percentage decrease and to complete the table.

House	Original Cost	10% decrease	New cost
A	$£ 235,650$		
B	$£ 145,950$		
C		$£ 32,760$	

Percentage Increase \& Decrease

Reasoning and Problem Solving

Football tickets cost $£ 46.80$ after a 20% decrease.	Cindy has found 20% of the reduced price rather than realising the reduced price is worth 80\%		
Cindy says,	The original tickets cost C56.16 you explain her mistake?		
James says,	James is correct as the whole number would be worth 100% and 100 take away 17 is 83.		
finding 87% of that			
number.		\quad	Children might
:---			
calculate both and			
see that they are			
the same.			

Tamzin has an amount of money saved. The amount is increased by 25%
The new amount is then decreased by 25\%

Does Tamzin have the same amount of money as she started with?

Explain your answer.

No she would not as the two 25% s are not of the same value so therefore they will be worth different things.

Children could explore doing these calculations using different values to convince themselves.

Order FDP

Notes and Guidance

Children build upon their previous learning on fractions, decimals and percentages to see that there are different ways of expressing proportions.

Children convert between fractions, decimals and percentages in order to order and compare them.

Mathematical Talk

What do you notice about the fractions, decimals or percentages? Can you compare any straight away?

What is the most efficient way to order them?
If you put them in ascending order, what will it look like? If you put them in descending order, what will it look like?

Varied Fluency

1 Use <, > or = to complete the statements:

2 Order from smallest to largest:

40\%
2
0.45
$\frac{3}{10}$
54\%
0.05

Can you place them on a number line?
3 Four friends share a pizza. Tyrone eats 35% of the pizza, Jasmine eats 0.4 of the pizza, Imran eats 12.5% of the pizza and Oliver eats 0.125 of the pizza.

Can you write the amount each child eats as a fraction? Who eats the most? Who eats the least? Is there any left?

Order FDP

Reasoning and Problem Solving

In a Geography test, Sam scored 62\%	Sam scored more and Hamza scored $\frac{3}{5}$
Wha got the highest score?	thanza because $\frac{3}{5}$ is equivalent to 60%, and 62% is greater.
Explain your answer.	

