Released December 2017

Small Steps Guidance and Examples

(Block 1 – Multiplication & Division)

Year 1/2 - Yearly Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Autumn	Number: Place Value			Number: Addition and Subtraction			Geometi	ry: Shape	Measurement: Money			
Spring	Number: Multiplication and Division (Y1: Place Value to 50 included)			Number: Fractions Lengt			rement: h and ght		ement: apacity perature	Consolidation		
Summer	Value w	: Place ithin 100 Statistics	Positio	netry: on and ction	Problem Measurement: Time Investigations			Measurement: Time		gations	Consolidation	

Week 1 to 4 – Number: Multiplication & Division

Overview

Small Steps

Year 1

Numbers to 50	
Tens and ones	
Represent numbers to 50	
One more one less	
Compare objects within 50	
Compare numbers within 50	$\left(\right)$
Order numbers within 50	
Count in 2s	
Count in 5s	
Count in 10s	J

Guidance

This is a good opportunity for year 2 to recap place value before moving on to multiplication and division. Year 1 will need to cover this before they learn the multiplication and division block.

Week 1 to 4 – Number: Multiplication & Division

Ove	Overview							
Sma	Small Steps							
	Year 1	Year 2						
		Recognise equal groups						
	Make equal groups	Make equal groups						
	Add equal groups	Add equal groups						
I		The multiplication symbol						
		Multiplication from pictures						
I	Make arrays	Use arrays						
	Make doubles	The 2 times table						
I		The 5 times table						
		The 10 times table						
I	Make equal groups - sharing	Make equal groups - sharing						
	Make equal groups - grouping	Make equal groups - grouping						
I		Divide by 2						
		Odd & even numbers						
		Divide by 5						
		Divide by 10						

Week 1 to 4 – Number: Multiplication & Division

Numbers to 50

Notes and Guidance

Children build on previous learning of numbers to 20 They learn about grouping in 10s and the idea of 1 ten being equal to 10 ones is reinforced.

Children count forwards and backwards within 50 and use a number track to support their understanding of this.

Mathematical Talk

What happens when we get to 10?

___ ones make ___ ten.

How many groups of 10 can we see in the number ____?

How does the ten frame show groups of 10?

Varied Fluency

Use ten frames and counters to show how many apples Joe has.

0000000000000

How many muffins are there?

Use a number track to

- (a) count back from 46 to 38
- (b) count forwards from 35 to 49

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Year 1 Spring Term

Numbers to 50

Reasoning and Problem Solving

Do you agree with Alex?

Explain your answer.

Possible answer: I do not agree with Alex because she has counted 30 twice. There should be 36 muffins.

Sasha is counting from 38 to 24	Possible answer:
Will she say the number 19? Explain how you know.	Sasha will not say 19 because 19 is not between 38 and 24 Children could show this on a number track.

Week 1 to 4 – Number: Multiplication & Division

Tens and Ones

Notes and Guidance

Children use their knowledge from the previous step to look at how many groups of tens and ones there are in a number. They will use a range of concrete materials to do this.

It is important that children understand how a number is made up of tens and ones. For example, the number 34 is made up of 3 tens and 4 ones.

Mathematical Talk

How many tens are there? How many ones are there? What number does that make?

How can you exchange ten ones for one ten using different representations?

Varied Fluency

Year 1 Spring Term

Tens and Ones

Reasoning and Problem Solving

Mo says, There are 25 counters. I do r Mo b ten fr all fu

Do you agree with Mo?

Explain your answer.

Possible answer:

I do not agree with Mo because the ten frames are not all full so he doesn't have 2 tens and 5 ones. He has 23 counters. Alice and Billy both attempt to build the same number.

Who is correct?

Can you explain the mistake that has been made?

Billy is correct.

Alice has got mixed up with tens and ones and shown 4 ones and 2 tens (24)

Represent Numbers to 50

Notes and Guidance

Children represent numbers to 50 using a variety of concrete materials.

Children should be able to state how a number is made up. For example, 29 is made up of 2 tens and 9 ones.

Mathematical Talk

Which part represents the tens? Which part represents the ones?

What do you notice about the numbers 30? How many tens are there? How many ones?

Varied Fluency

- Using base 10, make the following numbers on the place value chart.
 - 29
 - 30
 - 48

Tens	Ones

There are ____ tens and ____ ones in ____.

- 2 Using ten frames and counters, show:
 - 19
 - 32
 - 40

There are ____ tens and ____ ones in ____.

3

How many different ways can you represent the following numbers? Here is an example for 25

• 34

- 28
- 49

Year 1 Spring Term

Represent Numbers to 50

Reasoning and Problem Solving

Alan is incorrect as he has mixed up his tens and ones and made 32 rather than 23

I have 3 tens and 8 ones. My number must be 308

Explain the mistake Kate has made.

Kate has written 3 tens as 30 instead of just using the digit 3 in the tens column. It should be 38

Week 1 to 4 – Number: Multiplication & Division

One More One Less

Notes and Guidance

Building on previous learning of tens and ones, children will start to compare numbers finding one more and one less than given numbers up to 50

Children build numbers concretely before using number tracks and 1–50 grids.

Mathematical Talk

What number is shown? How do you know?

How many tens are there in ____? How many ones?

When finding one more and one less than, which column changes? Why?

Varied Fluency

1	Fill in the blanks:		e are donuts. more than is
	88888888 8888888		e are donuts. .ess than is
2	Build and find one more a	and on	e less. One more than is One less than is
			One more than is One less than is
3	Find one more and one le	ess:	
	One less than is 31 32 33 34 35 36 37 38	39 40	19 20 21 22 23 24 25 26 27 28 36 37 38 39 40 41 42 43 44 45 13 14 15 16 17 18 19 20 21 22
	One more than	is	

40 41 42 43 44 45 46 47 48 49 50

Year 1 | Spring Term

One More One Less

Reasoning and Problem Solving

19 20 21 23 24 25 26 27 28 29 One more than 21 is 23 Do you agree? Explain your answer.	No, the number track is wrong. The answer should be 22	Choose the correct numbers to make the sentences correct.	26 35 45 49
How many different ways can you represent one more than and one less than this number?	Children could use a number line, number pieces, base ten, place	is one less than 27 34 is one less than	
	value table etc to represent the numbers 45 and 47	is one more than 44 50 is one more than	

Week 1 to 4 – Number: Multiplication & Division

Compare Objects within 50

Notes and Guidance

Children compare two sets of objects using the inequality symbols. Children use the language 'more than', 'less than' and 'equal to' alongside the correct symbols.

The way numbers can be built and represented should be explored to find the simplest and easiest way to visualise the numbers when comparing.

Mathematical Talk

What could we use to represent the muffins?

How could we layout the muffins to help us compare?

What do <, > and = mean?

What is the smallest number you could have in the last box on the table.

Varied Fluency

Year 1 Spring Term

Compare Objects within 50

Reasoning and Problem Solving

Compare Numbers within 50

Notes and Guidance

Building on previous learning of comparing objects within 50, children compare two numbers using the inequality symbols.

Children use the language 'more than', 'less than' and 'equal to' alongside the correct symbols to compare numbers.

Mathematical Talk

What does <, > and = mean?

- How many tens are there in ____? How many ones?
- What is one more than ____? What would one less be?

How many more/less is _____ than _____?

Varied Fluency

Year 1 Spring Term

Compare Numbers within 50

Reasoning and Problem Solving

Beth makes a 1-50 grid to help her compare 18 and 13

1	2	3	4	5	6	7	8	9	10
20	19	18	17	16	15	14	13	12	11
21	22	23	24	25	26	27	28	29	30
40	39	38	37	36	35	34	33	32	31
41	42	43	44	45	46	47	48	49	50

Beth thinks that 18 is less than 13

Do you agree?

Can you spot her mistake?

Possible answer: Beth has incorrectly filled in her 1-50 grid. 18 is greater than 13 Use the 1-50 grid to complete the statements.

12	21
	21

21	12	
21		

21 is	 than	12

12 is _____ than 21

1	2	3	4	5	6	7	8	9	10
11	(12)	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Prove it.

12 < 21

21 is more than 12 21 > 12 12 is less than 21

Children can prove it using concrete resources e.g. ten frames or place value charts.

Week 1 to 4 – Number: Multiplication & Division

Order Numbers within 50

Notes and Guidance

Children order numbers using the language, 'largest', 'smallest', 'biggest', 'greatest', 'least', 'most' and 'equal to'.

They continue to use inequality symbols to order numbers in ascending and descending order.

Mathematical Talk

Which group is the largest? Which group is the smallest?

How many are in group _____?

How many more/less does group ____ have than group ____?

Can you build the groups using cubes and compare? Explain what you notice.

What is the smallest/largest number that could complete the empty box?

Varied Fluency Order the groups of cubes starting with the largest group. Group 1 Group 2 Group 3 2 Order the three numbers from smallest to biggest: Using base 10, build and order from biggest to smallest: 23, 49, 19 11, 33, 22 41, 14, 42, 24 3 Use the four numbers to complete the statement. 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Year 1 Spring Term

Order Numbers within 50

Reasoning and Problem Solving

Spot the Mistake

12 > 21 > 33 > 35

Can you correct it?

The wrong inequality symbol has been used. It should be 12 < 21 < 33 < 35 or 35 > 33 > 21 > 12 Find at least 5 different numbers that could complete the statement.

Possible answers: 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40

Week 1 to 4 – Number: Multiplication & Division

Count in 2s

Notes and Guidance

Children build on previous learning of counting in twos and go beyond 20 up to $50\,$

They will apply previous learning of one more and one less to counting forwards and backwards in twos. For example, two more than and two less than. The 1-50 grid will be used to spot and discuss patterns that emerge when counting in 2s.

Mathematical Talk

How can we count the socks and gloves? What does it mean to count in pairs?

Can you describe the pattern on the grid? Why do you think this happens?

What do you notice about the digits in the ones column for each of the numbers shaded in your grid?

Will 25 appear on our number line? Why?

Varied Fluency

How many socks are there?

There are ____ socks in total.

How many gloves are there?

There are <u>gloves</u> in total.

Continue counting in 2s on the grid.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Complete the number lines by counting in 2s.

Year 1 Spring Term

Count in 2s

Reasoning and Problem Solving

Count in 2s backwards to complete the number track.

Explain how you got your answer.

38, 36, 34

Children should explain how they count backwards in 2s

Jess thinks that if she continues counting in 2s, she will say the number 49

Do you agree?

Explain why.

Jess is wrong. She will say 44, 46, 48, 50 and miss out 49

Week 1 to 4 – Number: Multiplication & Division

Count in 5s

Notes and Guidance

Children build on previous learning of counting in fives to go beyond 20 and up to 50

The 1-50 grid will be used to spot and discuss patterns that emerge when counting in 5s.

Mathematical Talk

How can we count the fish and grapes?

Can you describe the pattern on the grid? Why do you think this happens?

What do you notice about the digits in the ones column for each of the numbers shaded in the grid?

appear on our number line? Why? Will

Varied Fluency

How many fish are there?

There are ____ fish in each tank. There are tanks. There are ____ fish altogether.

How many grapes are there?

There are ____ grapes in each bunch. There are <u>bunches</u>. There are ____ grapes altogether.

2

Continue counting in 5s on the grid.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Complete the number lines by counting in 5s.

Year 1 | Spring Term

10

25

Count in 5s

Reasoning and Problem Solving

There are 30 pencils.

Jenson said 0 when there were 5 at the start.

Jenson started counting at 0 when he should have started counting at 5

Year 1 | Summer Term | Teaching Guidance

Week 1 to 4 – Number: Multiplication & Division

Count in 10s

Notes and Guidance

Children count in tens for the first time.

They use pictures, bead strings and number lines to support their counting.

Counting in 10s on a hundred square will also support children to see the similarities between the numbers when we count in tens.

Mathematical Talk

How can we count the birds and flowers?

Will	appear	on	our	number	line?	Why?
------	--------	----	-----	--------	-------	------

What is the same about all the numbers we say when we are counting in tens?

Varied Fluency

There are	_ flowers in each bunch.
There are	_ bunches.
There are	_ flowers altogether.

Use a 0-100 bead string to count in tens. Can we count forwards and backwards in tens?

Can we count in tens on a number line as well? How does this match counting on a bead string?

Year 1 Summer Term

Count in 10s

Reasoning and Problem Solving

Max wants to buy forty grapes.

Are there enough grapes?

Yes there are enough grapes. There are fifty grapes and Max only needs forty. Jemima is counting in 10s on a hundred square.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

She starts at 10

- Shade in all the numbers Jemima will say.
- What is the same about the numbers she says?

What is different about the numbers?

Jemima will say 10, 20, 30, 40 and 50 All the numbers have the same ones digit (0) They all have different tens digit. The tens digit goes up by 1 for each new number she says.

Year 2 | Autumn Term | Teaching Guidance

Recognise Equal Groups

Notes and Guidance

At this stage, children are describing equal groups using stem sentences to support them.

It is important that children know what groups are equal and which are unequal.

The addition or multiplication symbol is not used within this small step but this language will support them in understanding repeated addition and multiplication.

The examples included, refer to the times tables facts year 2 children need to know.

Mathematical Talk

What does the 2 represent? What does the 3 represent?

What does the 5 represent? What does the 2 represent?

I have X equal groups, with Y in each group. Which image am I describing?

Varied Fluency

3

Complete the stem sentence.

There are _____ equal groups with _____ in each group.

Complete the sentences.

There are _____ equal groups with _____ in each groups. I have two _____.

Describe the equal groups.

What is the same and what is different in each group?

Year 2 Autumn Term

Recognise Equal Groups

Reasoning and Problem Solving

Explain why.

The bags with 5p in each because the 2ps and 1ps have 4p in each group.

Sort into equal and	unequal groups.	Hearts and dots in
Equal groups	Unequal groups	unequal groups.
		Stars and squares in equal groups.
Create your own pic column.	ture to go in each	
Spot the mistake.		There are 2 equal groups with 10 in each group There are two 10s.
There are 10 equal g each group. There a		

Make Equal Groups

Notes and Guidance

Children use stories, pictures and concrete manipulatives to explore making equal groups and write statements such as 'there are ____ groups of ____.' They will identify whether groups are equal or not. Children will look at groups that look different but are the same.

At this stage children do not explore multiplication formally.

Mathematical Talk

How do I know groups are equal? What does equal mean?

How many <u>pencils</u> are there in each <u>pot?</u> How can I complete the sentence to describe the groups.

Are Josh's groups equal or unequal? How can we make them equal?

Varied Fluency

Make Equal Groups

Reasoning and Problem Solving

Farmer Hamilton and Farmer Connolly are making hay bundles.

Who made equal groups?

Possible answer:

Farmer Connolly has because she has 3 groups of 3 hay bundles.

Farmer Hamilton's look the same but they are not.

Use concrete materials or pictures to complete the questions.

Jemima has 4 equal groups. Show me what Jemima's groups could look like.

Kim has 3 unequal groups. Show me what Kim's groups could look like. Children will show 4 groups where there are the same amount in each group for Jemima and 3 groups that are unequal for Kim.

Encourage children to do this in more than one way.

Make Equal Groups

Notes and Guidance

The children should be able to make equal groups to demonstrate their understanding of the new language.

With the examples provided to the children, it is important that they are exposed to numerals and words, as well as multiple representations.

Mathematical Talk

How else could you represent these in equal groups?

How many ways can you represent this?

How have you grouped your items?

Varied Fluency

The image below shows six equal groups with ten in each group. There are six 10s.

How else can you represent these equal groups?

How many ways can you represent 'four equal groups with three in each group'.

What else do we need to show 'five 3s'?

How else can we show five equal groups with three in each group?

Year 2 Autumn Term

Make Equal Groups

Reasoning and Problem Solving

Year 1 | Summer Term | Teaching Guidance

Week 1 to 4 – Number: Multiplication & Division

Add Equal Groups

Notes and Guidance

Children use equal groups to find a total. They focus on counting equal groups of 2, 5 and 10 and explore this within 50. Children begin by linking this to real life, for example animal legs, wheels, flowers in vases etc.

Children then begin to represent the equal groups pictorially and with number sentences.

Mathematical Talk

How many apples are there in each bag?

How can we represent this with counters/cubes/on a number line/in a number sentence etc?

What other equipment could you use to represent your pattern? What's the same? What's different?

Which is more, 3 groups of 10 or 4 groups of 5? Prove why.

Varied Fluency

Add Equal Groups

Reasoning and Problem Solving

Add Equal Groups

Notes and Guidance

Once the children can describe and make equal groups, they can start relating equal groups to repeated addition.

At this point children would have added 3 single digits together, therefore they can add any 3 numbers together. If there are more than 3 equal groups, the examples must be limited to 2s, 5s, 10s and 3s.

Mathematical Talk

What do the two 3s represent?

Why are we using the addition symbol?

How else can we show the equal groups?

What is the total?

Varied Fluency

Fill in the table:

Year 2 Autumn Term

Add Equal Groups

Reasoning and Problem Solving

True or False?

5 + 5 = 2 + 2 + 2 + 2 + 2

Draw an image or use cubes to help you explain your answer.

This is true because they both equal 10 but the groups look different.

The three 5s do not belong, we would have to take away one five.

Year 2 | Autumn Term | Teaching Guidance

The Multiplication Symbol

Notes and Guidance

Within this step, the multiplication symbol is introduced for the first time.

Children should link the stem sentences, repeated addition and multiplication together.

They should also be able to interpret mathematical stories and create their own.

The use of concrete resources and pictorial representations is still vital for understanding.

Mathematical Talk

What does the 3 represent? What does the 6 represent?

What does lots of mean?

Does $18 = 3 \times 6$ mean the same?

How is 6 + 6 + 6 the same as 3×6 ?

Varied Fluency

Complete the sentences to describe the equal groups.

= 18

= 18

X

There are <u>equal groups with</u> in each group. There are three ___.

Complete the table:

Three 2s	Draw It	Addition	Multiplication
There are 3			
equal groups			
with 2 in each			
group.			

3

2

Com	plete:	
20111	pieie.	

Addition	Multiplication	Story
10 + 10 + 10		
	6 × 5	

Year 2 Autumn Term

The Multiplication Symbol

Reasoning and Problem Solving

$3 + 3 + 3 = 3 \times 3$	He is correct because $3+3+3=9$ and $3\times3=9$	Think of a multiplication to complete: $6 + 6 + 6 > \ × \$	Could be: $6+6+6 > 2\times 2$ Any answer where it is less than 18
Is he correct? Explain why. Draw an image to help you.		The total is 12, what could the addition and multiplication be?	$6 + 6 \text{ and } 2 \times 6$ 3 + 3 + 3 + 3 = 4 $\times 3$
Use <, > or = to make the statements correct.			2+2+2+2+2+2+ $2=6 \times 2$
3×5 5+5+5+5	3×5 < 5+5+5+5		$4 + 4 + 4 = 3 \times 4$
2 × 2 2 + 2	$2 \times 2 = 2 + 2$		
4 + 4 + 4 2 × 2	4+4+4 > 2×2		

Year 2 | Autumn Term | Teaching Guidance

Multiplication from Pictures

Notes and Guidance

Similar to recognising equal groups, children will be using the multiplication symbol and working out the total from pictures.

The children should also be able to interpret a word problem by drawing images to help them solve it.

Coins could be used within this small step too.

Mathematical Talk

What does the 4 represent?

What does the 3 represent?

What does the 12 represent?

Can you think of your own story for $3 \times 4 = 12$?

Varied Fluency

2

3

Fill in the missing boxes:

Picture	Multiplication	Sentence
	$4 \times 10 = 40$	4 lots of 10 is equal to 40
	$35 = 7 \times 5$	
		6 lots of 3 is equal to 18

Year 2 Autumn Term

Multiplication from Pictures

Reasoning and Problem Solving

i			
There are three dolls in each basket. There are four baskets. How many dolls are there altogether? Draw and image and write a calculation o represent the problem.	The image could be 4 circles with 3 in each The calculation $3 \times 4 = 12$	How many different calculations can you see in this image?	Possible 5×2 2×5 5 + 5 2 lots of 5 lots of etc
/rite a sensible story for the calculation \times 10 raw an image to illustrate your story.	A possible story could be; there were four tables with ten children on each table; there were four purses with 10p in	Explain your reasoning.	

each purse etc.

Year 1 | Summer Term | Teaching Guidance

Week 1 to 4 – Number: Multiplication & Division

Make Arrays

Notes and Guidance

Children begin to make arrays by making equal groups and building them up in columns or rows.

They use a range of concrete and pictorial representations alongside sentence stems to support their understanding.

Children also explore arrays built incorrectly and recognise the importance of columns and rows.

Mathematical Talk

How many equal groups do I have? How many in each group? Can I represent my <u>apples</u> with counters?

How many counters in each row? How many counters in each column?

How can I record my array with a number sentence?

Varied Fluency

Build the array shown with counters. Complete the sentences.

There are	apples in each row.
There are	rows.
++	=

There are _____ apples altogether.

Complete the table.

Array	Description - columns	Description - rows	Totals	
	5 columns 2 cookies in each column	2 rows 5 cookies in each row	2+2+2+2+2=10 5+5=10	
0000	columns donuts in each column	rows donuts in each row		
	columns fish in each column	rows fish in each row		
	3 columns 5 cupcakes in each column	5 rows 3 cupcakes in each row		

Year 1 Summer Term

Make Arrays

Reasoning and Problem Solving

Who has made a mistake? Explain why.

Toby and Lilly are writing number sentences to describe the array.

Who do you agree with? Explain why.

Possible answer: Libby has made a mistake because her array is not in columns. There are an unequal amount of squares in each row.

Possible answer:

They are both right. Toby has counted the columns. Lilly has counted the rows. Jenny makes an array but stops. She has finished her first row. Can you complete her array?

Possible answer: Array showing 10 + 10 + 10 + 10 = 40

Year 2 | Autumn Term | Teaching Guidance

Week 1 to 4 – Number: Multiplication & Division

Use Arrays

Notes and Guidance

Within this small step children explore arrays to see the commutativity between multiplication facts e.g. $5 \times 2 = 2 \times 5$

The use of the array could be used to help children calculate multiplication statements.

The symbol and language of lots of should be used interchangeably.

Mathematical Talk

Where are the 2 lots of 3?

Where are the 3 lots of 2?

What do you notice?

What can we use to represent the eggs and shells? Can you draw an image?

Varied Fluency

On the image, find 2×5 and 5×2

Can you represent this array using another object?

 2×3

and

Draw an array to show:

 $2 \log 10 = 10 \log 2$

 $3 \times 5 = 5 \times 3$

Complete the number sentences to describe the arrays.

Year 2 Autumn Term

Use Arrays

Year 1 | Summer Term | Teaching Guidance

Week 1 to 4 – Number: Multiplication & Division

Make Doubles

Notes and Guidance

Children explore doubling with numbers up to 20. They look at representations to decide whether that shows doubling or not.

Children show and explain what doubling means using concrete and pictorial representations.

They record doubling using the sentence 'Double ____ is ____.'

Mathematical Talk

Can you sort these representations in to doubles and not doubles? How do you know they've been doubled?

Which ones are confusing? Why?

Take the number pieces and double it. What is double ____ ?

What comes next in my table, why?

How can we show the double differently?

Varied Fluency

Sort the representations into the table. Which show doubles and which do not?

Doubles	Not doubles	

Take a number piece and double it. Complete the sentence.

Double ____ is ____ Double ____ is ____

Complete and continue the table.

Year 1 Summer Term

Make Doubles

The 2 Times Table

Notes and Guidance

At this stage children should be comfortable with the concept of multiplication so they can apply this to their times tables that they need to be secure with.

Images should be used to encourage children to count in twos as well as number tracks. Resources such as cubes and Numicon are important for children to explore equal groups within the 2 times tables.

Mathematical Talk

If there is 16p in total, how many coins would there be?

How many 2s go into 16?

How can the images of the 5 bikes help you to solve the problems?

Varied Fluency

Year 2 Autumn Term

The 2 Times Table

The 5 Times Table

Notes and Guidance

Before this small step, children would have counted in 5s from any given number.

The children would have also been exposed to the 2 times tables.

This small step is focused on the 5 times tables and it is important to include the use of zero. Children should see the = sign at both ends of the calculation to understand what it means.

Mathematical Talk

If there are 30 petals, how many flowers? Can you count in 5s to 30? How many 5s go into 30?

How many 5s go into 35?

What does each symbol mean? Do we need to calculate?

Varied Fluency

How many petals altogether?

Write the calculation.

 $\times 5 = 35$

Use <, > or = to make the statements correct.

Year 2 Autumn Term

The 5 Times Table

Reasoning and Problem Solving

Write a calculation for the picture that is left over.

The 10 Times Table

Notes and Guidance

Before this small step, children would have counted in 10s from any given number. This small step is focused on the 10 times tables and it is important to include the use of zero. Children should see the = sign at both ends of the calculation to understand what it means.

Mathematical Talk

What if there were 10 packs of crayons? If there were 50 crayons altogether, how many packets? How do you know?

How many tens go into 30? Can you count in 10s to 30?

What does greater than mean?

What does less than mean?

Varied Fluency

 $\times 10 =$

How many crayons are there altogether?

There are crayons altogether.

Altogether there are 30 bottles, how many walls are there?

2

Think of a multiplication fact for 10s to go in each box.

Year 2 Autumn Term

The 10 Times Table

Reasoning and Problem Solving

On sports day, Tom runs 10 metres, 7 times.

Which of the calculations do not describe the word problem?

10 + 77 × 10 7 + 7 + 7 + 7 + 7 + 7 + 7 10 + 10 + 10 + 10 + 10 + 10

Explain why.

10 + 7 is incorrect because he has run 10 metres, 7 times 7 + 7 + 7 + 7 + 7 +7 + 7 is incorrect because he doesn't run 7 metres. He runs 10 metres. Some base 10 is hidden. The total is less than 100 What could the calculation be? × 10 =

Tim says it could be 10×10 Is he correct? Explain your answer. It could be 5 x 10= 50 6 x 10= 60 7 x 10=70 8 x 10= 80 9 x 10 = 90

It can't be 10 x 10 because 100 is not less than 100

Year 1 | Summer Term | Teaching Guidance

Make Equal Groups - Sharing

Notes and Guidance

Children will explore sharing practically by using 1:1 correspondence. To begin with, children need to represent the groups they are sharing into with a physical object or a pictorial representation. For example, share the 12 balls between the two buckets. Share the 12 dots between the two circles.

Children should also be exposed to opportunities where an amount will not share equally.

Mathematical Talk

How can I share the muffins equally?

How many muffins on this plate? How many on this plate? Are they equal? If I had 9 muffins what would happen?

How can I share ____ between ____ ?

How can I represent this number story? What do the *cubes* represent (bananas)? What do the trays represent (boxes)?

Varied Fluency

Share the muffins equally between the two plates. Complete the sentence

____ cakes shared equally between 2 is ____

Use 20 cubes and hoops to represent your friends. Can you share the cubes between 5 friends? 20 shared between 5 equals _ Can you share the cubes between 2 friends? 20 shared between 2 equals ____ Can you share the cubes between 10 friends? 20 shared between 10 equals ____

Tim has 16 bananas. 3

He shares them equally between two boxes. Represent and solve the problem.

Year 1 Summer Term

Make Equal Groups - Sharing

Make Equal Groups - Sharing

Notes and Guidance

Children divide by sharing to make equal groups using one to one correspondence. They need to do this in practical contexts then pictorially.

Children will be introduced to the \div symbol. They will begin to see the link between division and multiplication.

Mathematical Talk

How many do you have to begin with? How many equal groups are you sharing between? How many are in each group? How do you know that you have shared the objects equally?

____ has been shared equally in to ____ equal groups. ____ groups of ____ make ____

Varied Fluency

Practically share the 12 cubes into the two boxes.

There are ____ cubes altogether. There are ____ boxes. There are ____ cubes in each box.

Can you share the 12 cubes into 3 boxes?

Share 15 beanbags between the 3 hoops.

Share 12 beanbags between 3 hoops in the same way.

12 ÷ 3 =

Billy draws this bar model to divide 20 between 4 equal groups. He writes $20 \div 4 = 5$

What other number sentences could Billy create using his model?

Make Equal Groups - Sharing

Reasoning and Problem Solving

Is it possible to work out 60 ÷ 3 in the same way? Prove it Jane has 20 sweets and shares them between 5 friends.

Tom has 20 sweets and shares them between 10 friends.

Whose friends will receive the most sweets?

How do you know?

Jane's friends get more because Tom is sharing with more people so they will get fewer sweets each. Jane's friends will get 4 sweets each whereas Tom's friends will only get 2 sweets each.

Year 1 | Summer Term | Teaching Guidance

Make Equal Groups - Grouping

Notes and Guidance

Children start with a given total and make groups of an equal amount. They record their understanding in sentences, not through formal division at this stage.

Children can develop their understanding of equal groups by also being exposed to numbers which do not group equally.

Mathematical Talk

We have ____ <u>mittens</u> how many equal groups of 2/5/10 can I make?

What would happen if there were 21 cubes?

Have I got equal groups? Does each group need to look the same for it to be equal still? What makes it equal?

Week 1 to 4 – Number: Multiplication & Division

Varied Fluency

How many equal groups of 2 can you make with the mittens?

There are _____ groups of 2 mitten If you had 10 mittens, how many equal groups of 2 mittens could you make?

2 Take 20 cubes. Complete the sentences. I can make _____ equal groups of 2 I can make _____ equal groups of 5 I can make _____ equal groups of 10

Complete the table. Use equipment to help you.

Year 1 Summer Term

Make Equal Groups - Grouping

Answer: 10	I am thinking of a number between 20 and 30	Answer: 25
Zeb has 5 equal groups of 2 = 10	I can only make equal groups of 5 with it.	Children can use
Paulo has 1 equal	What must my number be?	practical equipment to
group of 10 = 10	What happens when I try make groups of 2 with it?	solve this and discover what
Possible answer:	What happens when I try make groups of 10 with it?	happens. If you make equal groups of 2 with it
a is 5 equal groups of 2		there will be 1 left over.
b is 2 equal groups of 5		If you make equal groups of 10 with
c is 1 equal group of 10		it there will be 5 left over.
	Zeb has 5 equal groups of 2 = 10 Paulo has 1 equal group of 10 = 10 Possible answer: They all equal 10 a is 5 equal groups of 2 b is 2 equal groups of 5 c is 1 equal group	Zeb has 5 equal groups of 2 = 10and 30Paulo has 1 equal group of 10 = 10I can only make equal groups of 5 with it.What must my number be?What happens when I try make groups of 2 with it?Possible answer: They all equal 10 a is 5 equal groups of 2 b is 2 equal groups of 5 c is 1 equal groupsWhat happens when I try make groups of 10 with it?

Make Equal Groups - Grouping

Notes and Guidance

Children divide by grouping objects into a given amount. They then count on to find the total number of groups.

They need to do this in practical contexts then pictorially.

They need to recognise the link between division, multiplication and repeated addition.

Mathematical Talk

How many do you have to begin with? How many are in each group? How many groups do you have?

How long should your number line be? What will you count up in?

There are _____ groups of _____ which make

Varied Fluency

Pencils come in packs of 20 We need to put 5 in each pot How many pots will we need?

There are ____ pencils altogether. There are ____ pencils in each pot. There are ____ pots.

18

2

Tim uses a number line to work out how many equal groups of 2 he can make from 12

18

Use a number line to work out how many equal groups of 5 you can make from 30

Make Equal Groups - Grouping

Reasoning and Problem Solving

You have 30 counters.

How many equal groups can you make?

Represent you groups as a number sentence.

10 groups of 3 3 groups of 10 6 groups of 5 5 groups of 6 2 groups of 15 15 groups of 2 Tom has 5 equal groups.

The amount he started with is greater than 10 but less than 35

What could he have started with?

How many will be in each group?

Week 1 to 4 – Number: Multiplication & Division

Divide by 2

Notes and Guidance

Children should be secure with grouping and sharing. They will use this knowledge to help them divide by 2.

They will be secure with representing division as an abstract number sentence using the division and equals symbol.

Children should be able to count in 2s and know their $2 \times$ table.

Mathematical Talk

What do you notice when you group these objects into twos?

Is there a link between dividing by 2 and halving?

What is different about sharing into two groups and grouping in twos?

Can we write a multiplication sentences as well as a division sentence? What do you notice?

Varied Fluency

Complete the bar model to show this calculation.

12

Divide by 2

Reasoning and Problem Solving

I have 24 p and divide it between 2 friends. How much will they get each?

I have 24 p in 2 pence pieces. How many 2 pence pieces do I have?

What is the same and what's different?

Matilda and Charlie share these apples equally. How many apples do they each get?

The calculation is the same in both. In the first question we are sharing whereas in the second question we are grouping.

There are 50 apples in total so Matilda and Charlie will get 25 apples each. Share 18 counters in two equal groups.

Take another 18 counters and put them in groups of 2

What's the same?

What's different?

Possible answer: When we share we get 9 counters in each group, and when we group we get 9 groups of 2

Week 1 to 4 – Number: Multiplication & Division

Odd & Even Numbers

Notes and Guidance

Building on from Year 1, children should be able to recognise odd and even numbers.

They will use concrete manipulatives to understand odd and even numbers and the structure of these.

Varied Fluency

Which of the numbers below can be shared equally between 2? Are the numbers odd or even? Show this in the table.

numbers can be shared between 2 equally. numbers cannot be shared between 2 equally.

Which pieces are odd? Explain why. Find or draw another piece.

Even

Spot the mistakes.

Mathematical Talk

Can you sort these objects (number pieces, ten frames, cubes, pictures etc) into odd and even?

What makes these odd/even?

Which of these numbers can you share equally between 2?

How do you find out if X is an odd or even number?

Odd & Even Numbers

True or false? 12 is an odd number. Prove it.	Children can use concrete or pictorial methods to show 12 is divisible by 2 and therefore it's false.	I have added two one-digit numbers. My answer divides by 2 equally.	Any two even one digit numbers or any two odd one digit numbers will give an even total. E.g. $1 + 3 = 4$
Bob is counting on the 100 square. Instead of saying the numbers he counts "red, yellow, red, yellow"	The red numbers are odd numbers and the yellow numbers are even.	Jermaine What could Jermaine's number be? Explain your answer. Is this the only possible answer?	
What could the red numbers be? Why? What could the yellow numbers be? Why?			

Week 1 to 4 – Number: Multiplication & Division

Divide by 5

Notes and Guidance

During this step, children focus on efficient strategies and whether they should use grouping or sharing.

They use their knowledge of the five times table to help them divide by 5

They will continue to see the '=' sign at both ends of the calculation.

Mathematical Talk

How can we show the problem using objects/images?

How does knowing your 5 times table help when dividing by 5?

Circle all the multiples of 5 on a 100 square. What do you notice about the numbers? Can you explain the pattern? How does this help you to divide these numbers?

When would we count in 5s?

Varied Fluency

Take 20 cubes.

How many towers of 5 can you make? You can make ____ towers of 5 ____ towers of 5 is the same as 20 20 is the same as ___ towers of 5

2

40 pencils are shared between 5 children.

How many pencils does each child get?

3 Group the 1 p coins into 5s. How many 5 p coins do we need to make 20 p?

Draw coins and complete the missing information.

- ____lots of 5 p = 20 one pence coins
- ____ lots of 5 p = 20 p
- 20 p = ___ × 5 p
- 20 p ÷ 5 p = ____

Divide by 5

Reasoning and Problem Solving

Sam has less than 50 sweets to share into his party bags.

If he puts 5 sweets into each bag and has 3 left over at the end, how many sweets did he have at the start?

Sam could have 48, 43, 38, 33, 28, 23, 18, 13 or 8 sweets. Use the number cards to make multiplication and division sentences.

How many can you make?

 $4 \times 5 = 20$ $5 \times 4 = 20$ $20 \div 4 = 5$ $20 \div 5 = 4$ $5 \times 2 = 10$ $2 \times 5 = 10$ $10 \div 2 = 5$ $10 \div 5 = 2$

Week 1 to 4 – Number: Multiplication & Division

Divide by 10

Notes and Guidance

Children will need to be able to multiply by 10 and recognise multiples of 10. They will need to use both grouping and sharing to divide by 10

Children start to see that grouping and counting in 10s is more efficient than sharing into 10 equal groups.

Mathematical Talk

What can we use to represent the apples?

How does knowing your 10 times table help you to divide by 10?

Circle all multiples of 10 on a hundreds square. What do you notice? Can you explain the pattern?

How many groups of 10 are there in ____ tens?

Varied Fluency

When 30 apples are sold in packs of 10, ____ packs of apples can be made.

Can you show this in a bar model?

I have 70 p in my pocket in 10 p coins. How many coins do I have? Draw a picture to prove your answer.

- **3** Fill in the missing numbers.
 - 70 ÷ 10 =
 - 6 tens ÷ 1 ten =

There are tens in 40

Divide by 10

Reasoning and Problem Solving

Mrs Owen has 80 sweets.

She shares them between 10 tables.

Which calculation describes the word problem?

≻ 80 ÷ 10

> 80 - 10

The first one describes the calculation. The second shows 80 subtract 80 and the third shows 80 subtract 10 Cakes are sold in boxes of 10 Joe and Orla are trying to pack the following amount of cakes into boxes.

Who is correct? Explain how you know.

Orla is correct because there are 60 cakes and 60 divided by 10 is 6

Joe has incorrectly grouped the cakes, he might have counted the rows wrong. He hasn't put them in 10s