Years 1/2

Small Steps Guidance and Examples

Block 1 - Multiplication \& Division

WhiteR@seMaths

Year 1 /2- Yearly Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
$\begin{aligned} & 5 \\ & \hline 1 \\ & \hline \end{aligned}$	Number: Place Value				Number: Addition and Subtraction				Geomet	y: Shape	Measurement: Money	
枈	Number: Multiplication and Division (Y1: Place Value to 50 included)				Number: Fractions			Measurement: Length and Height		Measurement: Mass, Capacity and Temperature		
률		Place thin 100 tatistics	Geometry: Position and Direction		Problem solving and efficient methods		Measurement: Time			Investigations		

Overview

Small Steps

Year 1

Numbers to 50
Tens and ones
Represent numbers to 50
\square One more one less

- Compare objects within 50
-Compare numbers within 50
- Order numbers within 50
\square Count in 2s
- Count in 5 s
- Count in 10s

Guidance

This is a good opportunity for year 2 to recap place value before moving on to multiplication and division. Year 1 will need to cover this before they learn the multiplication and division block.

Overview

Small Steps

Year 1	Year 2
	Recognise equal groups
Make equal groups	Make equal groups
Add equal groups	Add equal groups
	The multiplication symbol
Make arrays	Multiplication from pictures
Make doubles	Use arrays
	The 2 times table
Make equal groups - sharing	The 5 times table
Make equal groups - grouping	The 10 times table
	Make equal groups - sharing
	Make equal groups - grouping
	Divide by 2

Year 1 | Spring Term \| Teaching Guidance

Numbers to 50

Notes and Guidance

Children build on previous learning of numbers to 20
They learn about grouping in 10s and the idea of 1 ten being equal to 10 ones is reinforced.

Children count forwards and backwards within 50 and use a number track to support their understanding of this.

Mathematical Talk

What happens when we get to 10 ?
__ ones make \qquad ten.

How many groups of 10 can we see in the number \qquad ?

Varied Fluency

1 Use ten frames and counters to show how many apples Joe has.
oododododod -dododododododo

2 How many muffins are there?

3 Use a number track to
(a) count back from 46 to 38
(b) count forwards from 35 to 49

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 \\
\hline
\end{array}
$$

Numbers to 50

Reasoning and Problem Solving

Alex counts how many muffins she has.	Possible answer: I do not agree with Alex because she
has counted 30	
twice. There	
should be 36	
muffins.	

Sasha is counting from 38 to 24	Possible answer:
Will she say the number 19?	Sasha will not say 19 because 19 is not between 38 and 24 Children could show this on a number track.

Year 1 | Spring Term \| Teaching Guidance

Tens and Ones

Notes and Guidance

Children use their knowledge from the previous step to look at how many groups of tens and ones there are in a number. They will use a range of concrete materials to do this.

It is important that children understand how a number is made up of tens and ones. For example, the number 34 is made up of 3 tens and 4 ones.

Mathematical Talk

How many tens are there?
How many ones are there?
What number does that make?
How can you exchange ten ones for one ten using different representations?

Varied Fluency

1 How many tens and ones are shown?

2 What number is represented in the grid?

Tens	Ones
	0

There aretens and \qquad ones.
\qquad tens + \qquad ones $=$ \qquad
3 Match the image to the correct number.

- Three tens and six ones
- Two tens and five ones
- Four tens and three ones

Tens and Ones

Reasoning and Problem Solving

Mo says,	Possible answer: I do not agree with Mo because the ten frames are not all full so he doesn't have 2 tens and 5 ones. He has 23 counters.
Do you agree with Mo?	

Alice and Billy both attempt to build the

same number. | Billy is correct. |
| :--- |
| Alice has got |
| mixed up with tens |
| and ones and |
| shown 4 ones and |
| 2 tens (24) |

Year 1 | Spring Term | Teaching Guidance

Represent Numbers to 50

Notes and Guidance

Children represent numbers to 50 using a variety of concrete materials.

Children should be able to state how a number is made up. For example, 29 is made up of 2 tens and 9 ones.

Mathematical Talk

Which part represents the tens?
Which part represents the ones?
What do you notice about the numbers 30 ?
How many tens are there?
How many ones?

Varied Fluency

1 Using base 10, make the following numbers on the place value chart.

- 29
- 30
- 48

There are \qquad tens and \qquad ones in \qquad
2 Using ten frames and counters, show:

- 19
- 32
- 40

There are \qquad tens and \qquad ones in \qquad .

3 How many different ways can you represent the following numbers? Here is an example for 25

- 34
- 28
- 49

Represent Numbers to 50

Reasoning and Problem Solving

Alan, Daisy and Oliver have all tried to make 23	Alan is incorrect as he has mixed Ap his tens and
Alan	
ones and made 32	
rather than 23	

Kate says,	I have 3 tens and 8 ones. My number must be 308
Explain the mistake Kate has made.	Kate written 3 tens as 30 instead of just using the digit 3 in the tens column. It should be 38
(03)	

Year 1 | Spring Term \| Teaching Guidance

One More One Less

Notes and Guidance

Building on previous learning of tens and ones, children will start to compare numbers finding one more and one less than given numbers up to 50

Children build numbers concretely before using number tracks and 1-50 grids.

Mathematical Talk

What number is shown? How do you know?
How many tens are there in \qquad ?
How many ones?
When finding one more and one less than, which column changes? Why?

Varied Fluency

1 Fill in the blanks:

There are \qquad donuts. One more than \qquad is _-.

There are __ donuts.
One less than \qquad is \qquad
2 Build and find one more and one less.

One more than $_$is		
One less than	is	

3 Find one more and one less:

\[

\]

One More One Less

Reasoning and Problem Solving

Choose the correct numbers to make the 26 sentences correct. 35

45

| 28 | 26 | 33 | 45 |
| :--- | :--- | :--- | :--- |$\quad 49$

\squareis one less than 27

34 is one less than \square
\square is one more than 44
50 is one more than

Year 1 | Spring Term \| Teaching Guidance

Compare Objects within 50

Notes and Guidance

Children compare two sets of objects using the inequality symbols. Children use the language 'more than', 'less than' and 'equal to’ alongside the correct symbols.

The way numbers can be built and represented should be explored to find the simplest and easiest way to visualise the numbers when comparing.

Mathematical Talk

What could we use to represent the muffins?
How could we layout the muffins to help us compare?
What do $<,>$ and $=$ mean?
What is the smallest number you could have in the last box on the table.

Varied Fluency

1 Craig and Emma each have some muffins.

2 Fill in the blanks:

3 Complete the table:

Compare Objects within 50

Reasoning and Problem Solving

Ben compares two numbers.

Do you agree with Ben?
Explain your answer.

Possible answer:
Children may
choose to prove
Ben wrong by
building and
representing the
numbers shown.
บ

Year 1 | Spring Term \| Teaching Guidance

Compare Numbers within 50

Notes and Guidance

Building on previous learning of comparing objects within 50, children compare two numbers using the inequality symbols.

Children use the language 'more than', 'less than' and 'equal to' alongside the correct symbols to compare numbers.

Mathematical Talk

What does $<,>$ and $=$ mean?
How many tens are there in \qquad ? How many ones?

What is one more than \qquad ? What would one less be?

How many more/less is \qquad than \qquad ?

Varied Fluency

1 Use the number track to compare the two numbers using words and inequality symbols.

2 Use the 1-50 grid to compare using $<,>$ or $=$ 12 23
$38 \bigcirc 19$
$40 \bigcirc 39+1$

3 Use a number track or 1-50 grid to complete:

Compare Numbers within 50

Reasoning and Problem Solving

Beth makes a $1-50$ grid to help her
compare 18 and 13

1	2	3	4	5	6	7	8	9	10
20	19	18	17	16	15	14	13	12	11
21	22	23	24	25	26	27	28	29	30
40	39	38	37	36	35	34	33	32	31
41	42	43	44	45	46	47	48	49	50

Beth thinks that 18 is less than 13
Do you agree?
Can you spot her mistake?

Possible answer:

Beth has
incorrectly filled in
her $1-50$ grid. 18 is
greater than 13

Prove it.
$12<21$
21 is more than 12
$21>12$
12 is less than 21

Children can prove
it using concrete
resources e.g. ten
frames or place
value charts.

Order Numbers within 50

Notes and Guidance

Children order numbers using the language, 'largest', 'smallest', 'biggest', 'greatest', 'least', 'most' and 'equal to'.

They continue to use inequality symbols to order numbers in ascending and descending order.

Mathematical Talk

Which group is the largest? Which group is the smallest?
How many are in group \qquad ?

How many more/less does group \qquad have than group \qquad ?

Can you build the groups using cubes and compare? Explain what you notice.

What is the smallest/largest number that could complete the empty box?

Varied Fluency

1 Order the groups of cubes starting with the largest group.
sma 1919190
Goup 19010
gove 301010

2 Order the three numbers from smallest to biggest:

Using base 10, build and order from biggest to smallest:

- $23,49,19$
- 11,33, 22
- 41, 14, 42, 24
(3) Use the four numbers to complete the statement.

11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40

Order Numbers within 50

Reasoning and Problem Solving

Spot the Mistake	The wrong inequality symbol has been used.
It should be	
l2 $<21<33<35$	
or	
$35>33>21>12$	

Count in 2s

Notes and Guidance

Children build on previous learning of counting in twos and go beyond 20 up to 50

They will apply previous learning of one more and one less to counting forwards and backwards in twos. For example, two more than and two less than. The 1-50 grid will be used to spot and discuss patterns that emerge when counting in 2 s .

Mathematical Talk

How can we count the socks and gloves? What does it mean to count in pairs?

Can you describe the pattern on the grid? Why do you think this happens?

What do you notice about the digits in the ones column for each of the numbers shaded in your grid?

Will 25 appear on our number line? Why?

Varied Fluency

1 How many socks are there?

There are __ socks in total.
How many gloves are there?

There are __ gloves in total.
2 Continue counting in 2 s on the grid.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

3 Complete the number lines by counting in 2 s .
00

Count in 2s

Reasoning and Problem Solving

Do you agree?
Explain why.

Count in 5 s

Notes and Guidance

Children build on previous learning of counting in fives to go beyond 20 and up to 50

The 1-50 grid will be used to spot and discuss patterns that emerge when counting in 5 s .

Mathematical Talk

How can we count the fish and grapes?
Can you describe the pattern on the grid? Why do you think this happens?

What do you notice about the digits in the ones column for each of the numbers shaded in the grid?

Will \qquad appear on our number line? Why?

Varied Fluency

1 How many fish are there?

There are \qquad fish in each tank.
There are \qquad tanks.
There are \qquad fish altogether.

How many grapes are there?

There are \qquad grapes in each bunch.
There are \qquad bunches.
There are __ grapes altogether.
2 Continue counting in 5 s on the grid.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

3 Complete the number lines by counting in 5 s .

Count in 5s

Reasoning and Problem Solving

Count in 10s

Notes and Guidance

Children count in tens for the first time.
They use pictures, bead strings and number lines to support their counting.

Counting in 10s on a hundred square will also support children to see the similarities between the numbers when we count in tens.

Mathematical Talk

How can we count the birds and flowers?
Will \qquad appear on our number line? Why?

What is the same about all the numbers we say when we are counting in tens?

Varied Fluency

1 How many birds are there altogether?

There are \qquad birds in each tree.
There are \qquad trees.
There are \qquad birds altogether.

2 How many flowers are there altogether?

There are \qquad flowers in each bunch.
There are \qquad bunches.
There are \qquad flowers altogether.
3 Use a 0-100 bead string to count in tens.
Can we count forwards and backwards in tens?
-00000000000000000000
Can we count in tens on a number line as well?
How does this match counting on a bead string?

Count in 10s

Reasoning and Problem Solving

Jemima is counting in 10 s on a hundred
square.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

She starts at 10

- Shade in all the numbers Jemima will say.
- What is the same about the numbers she says?

What is different about the numbers?

Jemima will say 10, 20, 30, 40 and 50 All the numbers have the same ones digit (0) They all have different tens digit. The tens digit goes up by 1 for each new number she says.

Recognise Equal Groups

Notes and Guidance

At this stage, children are describing equal groups using stem sentences to support them.
It is important that children know what groups are equal and which are unequal.
The addition or multiplication symbol is not used within this small step but this language will support them in understanding repeated addition and multiplication.
The examples included, refer to the times tables facts year 2 children need to know.

Mathematical Talk

What does the 2 represent? What does the 3 represent?
What does the 5 represent? What does the 2 represent?
I have X equal groups, with Y in each group. Which image am I describing?

Varied Fluency

1 Complete the stem sentence.

There are \qquad equal groups with \qquad in each group.

2 Complete the sentences.

There are \qquad equal groups with \qquad in each groups. I have two \qquad -

3 Describe the equal groups.
What is the same and what is different in each group?
酸

Recognise Equal Groups

Reasoning and Problem Solving

Which group of money is the odd one	The bags with $5 p$ in each because out? the 2 ps and 1 ps have $4 p$ in each group.
Explain why.	

Make Equal Groups

Notes and Guidance

Children use stories, pictures and concrete manipulatives to explore making equal groups and write statements such as 'there are __ groups of __.' They will identify whether groups are equal or not. Children will look at groups that look different but are the same.

At this stage children do not explore multiplication formally.

Mathematical Talk

How do I know groups are equal? What does equal mean?
How many pencils are there in each pot? How can I complete the sentence to describe the groups.

Are Josh's groups equal or unequal? How can we make them equal?

Varied Fluency

1 Are the groups equal or unequal? Write a label for each.

2 Complete the sentences
 There are \qquad groups of \qquad pencils.

There are \qquad groups of \qquad flowers.

3 Josh is drawing equal groups of 3

Complete his drawing.

Make Equal Groups

Reasoning and Problem Solving

Farmer Hamilton and Farmer Connolly are making hay bundles.

Who made equal groups?

Possible answer:

Farmer Connolly
has because she
has 3 groups of 3
hay bundles.

Farmer Hamilton's look the same but they are not.

Use concrete materials or pictures to complete the questions.

Jemima has 4 equal groups.
Show me what Jemima's groups could look like.

Kim has 3 unequal groups.
Show me what Kim's groups could look like.

Children will show 4 groups where there are the same amount in each group for Jemima and 3 groups that are unequal for Kim.

Encourage
children to do this
in more than one
way.

Make Equal Groups

Notes and Guidance

The children should be able to make equal groups to demonstrate their understanding of the new language.

With the examples provided to the children, it is important that they are exposed to numerals and words, as well as multiple representations.

Mathematical Talk

How else could you represent these in equal groups?
How many ways can you represent this?
How have you grouped your items?

Varied Fluency

1 The image below shows six equal groups with ten in each group. There are six 10s.

How else can you represent these equal groups?
2 How many ways can you represent 'four equal groups with three in each group'.

3 What else do we need to show 'five $3 s$ '?

How else can we show five equal groups with three in each group?

Make Equal Groups

Reasoning and Problem Solving

Draw or use cubes to show what Eva should have done.

How can you make the groups equal?

Match the equal groups together.

Add Equal Groups

Notes and Guidance

Children use equal groups to find a total. They focus on counting equal groups of 2,5 and 10 and explore this within 50 . Children begin by linking this to real life, for example animal legs, wheels, flowers in vases etc.
Children then begin to represent the equal groups pictorially and with number sentences.

Mathematical Talk

How many apples are there in each bag?
How can we represent this with counters/cubes/on a number line/in a number sentence etc?

What other equipment could you use to represent your pattern? What's the same? What's different?

Which is more, 3 groups of 10 or 4 groups of 5? Prove why.

Varied Fluency

1 How many wheels altogether?

How many fingers altogether?

$$
5+5+5=
$$

2 How many apples are there? Complete the sentences.

There are \qquad apples.
There are \qquad groups of \qquad apples which is equivalent to

3 How many fish are there?
Complete the sentences and the number line.

\qquad $+$ \qquad
\qquad $=$ There are \qquad fish.

Add Equal Groups

Reasoning and Problem Solving

Tash and Jane have equal groups of	Answer:
either 2, 5 or 10.	Tash must have a
Jane has 5 equal groups.	larger group than Jane because she
Tash has 3 equal groups.	has less groups but her total is
Tash's total is more than Jane's total.	more.
Each of their totals is less than 40.	They could have: Jane: $2+2+2+2$
What could they be counting in?	
How many will be in each group?	$\begin{aligned} & \text { Tash: } 5+5+5= \\ & 15 \end{aligned}$
Use equipment to help you.	
	$\begin{aligned} & \text { Jane: } 5+5+5+5 \\ & +5=25 \end{aligned}$
	$\begin{aligned} & \text { Tash: } 10+10+10 \\ & =30 \end{aligned}$

Add Equal Groups

Notes and Guidance

Once the children can describe and make equal groups, they can start relating equal groups to repeated addition.

At this point children would have added 3 single digits together, therefore they can add any 3 numbers together. If there are more than 3 equal groups, the examples must be limited to 2 s , $5 \mathrm{~s}, 10 \mathrm{~s}$ and 3 s .

Mathematical Talk

What do the two 3 s represent?
Why are we using the addition symbol?
How else can we show the equal groups?
What is the total?

Varied Fluency

1 Complete:

There are \qquad equal groups with \qquad in each group.
There are two \qquad .

$$
__{+}+\ldots=6
$$

How else can you represent the equal groups?
(2) Complete:

There are \qquad _ equal groups with \qquad in each group.
There are three \qquad

$$
\ldots^{+}+\ldots+\ldots=12
$$

3 Fill in the table:

Add Equal Groups

Reasoning and Problem Solving

True or False?

$5+5=2+2+2+2+2$

Draw an image or use cubes to help you explain your answer.

This is true because they both equal 10 but the groups look different.

The Multiplication Symbol

Notes and Guidance

Within this step, the multiplication symbol is introduced for the first time.
Children should link the stem sentences, repeated addition and multiplication together.
They should also be able to interpret mathematical stories and create their own.
The use of concrete resources and pictorial representations is still vital for understanding.

Mathematical Talk

What does the 3 represent? What does the 6 represent?

Varied Fluency

1 Complete the sentences to describe the equal groups.

There are _ equal groups with _ in each group. There are three _

2 Complete the table:

Three 2s	Draw It	Addition	Multiplication
There are 3 equal groups with 2 in each group.			

What does lots of mean?
Does $18=3 \times 6$ mean the same?
How is $6+6+6$ the same as 3×6 ?

3 Complete:

Addition	Multiplication	Story
$10+10+10$		
	6×5	

The Multiplication Symbol

Reasoning and Problem Solving

Is he correct? Explain why.
Draw an image to help you.

Use is correct
correct.
because $3+3+3=9$
and $3 \times 3=9$

3×5
2×2
$4+4+4$

$2+5+5+5$

Think of a multiplication to complete:	Could be: $6+6+6>2 \times 2$
$\qquad 6+6+6>\ldots \times$	Any answer where it is less than 18
The total is 12, what could the addition and multiplication be?	$6+6$ and 2×6 $3+3+3+3=4$ $\times 3$
	$2+2+2+2+2+$ $2=6 \times 2$
	$4+4+4=3 \times 4$

Multiplication from Pictures

Notes and Guidance

Similar to recognising equal groups, children will be using the multiplication symbol and working out the total from pictures.

The children should also be able to interpret a word problem by drawing images to help them solve it.

Coins could be used within this small step too.

Mathematical Talk

What does the 4 represent?
What does the 3 represent?
What does the 12 represent?
Can you think of your own story for $3 \times 4=12$?

Varied Fluency

1 Complete:

2 Complete:

3 Fill in the missing boxes:

Picture	Multiplication	Sentence
-85	$4 \times 10=40$	4 lots of 10 is equal to 40
	$35=7 \times 5$	
		6 lots of 3 is equal to 18

Multiplication from Pictures

Reasoning and Problem Solving

Make Arrays

Notes and Guidance

Children begin to make arrays by making equal groups and building them up in columns or rows.

They use a range of concrete and pictorial representations alongside sentence stems to support their understanding.

Children also explore arrays built incorrectly and recognise the importance of columns and rows.

Mathematical Talk

How many equal groups do I have? How many in each group? Can I represent my apples with counters?

How many counters in each row? How many counters in each column?

How can I record my array with a number sentence?

Varied Fluency

1 Build the array shown with counters.
Complete the sentences.

There are \qquad apples in each row.
There are \qquad rows.
\qquad
\qquad $+$ \qquad
There are \qquad apples altogether.

2 Complete the table.

Array	Description - columns	Description - rows	Totals
\because	5 columns	2 rows	$2+2+2+2+2=10$
2 2 cookies in each column	5 cookies in each row	$5+5=10$	

Make Arrays

Reasoning and Problem Solving

Who has made a mistake? Explain why.
Toby and Lilly are writing number
sentences to describe the array.

Possible answer: Libby has made a mistake because her array is not in columns. There are an unequal amount of squares in each row.

Possible answer:

They are both right. Toby has counted the columns. Lilly has counted the rows.

Use Arrays

Notes and Guidance

Within this small step children explore arrays to see the commutativity between multiplication facts e.g. $5 \times 2=2 \times 5$

The use of the array could be used to help children calculate multiplication statements.

The symbol and language of lots of should be used interchangeably.

Mathematical Talk

Where are the 2 lots of 3 ?
Where are the 3 lots of 2 ?
What do you notice?
What can we use to represent the eggs and shells?
Can you draw an image?

Varied Fluency

(1) On the image, find 2×5 and 5×2

Can you represent this array using another object?
2 Complete the number sentences to describe the arrays.

(3) Draw an array to show:
$3 \times 5=5 \times 3$
2 lots of $10=10$ lots of 2

Use Arrays

Reasoning and Problem Solving

Make Doubles

Notes and Guidance

Children explore doubling with numbers up to 20. They look at representations to decide whether that shows doubling or not.

Children show and explain what doubling means using concrete and pictorial representations.

They record doubling using the sentence 'Double \qquad is \qquad \therefore

Mathematical Talk

Can you sort these representations in to doubles and not doubles? How do you know they've been doubled?

Which ones are confusing? Why?
Take the number pieces and double it. What is double \qquad ?

What comes next in my table, why?
How can we show the double differently?

Varied Fluency

1 Sort the representations into the table. Which show doubles and which do not?

2 Take a number piece and double it. Complete the sentence.

3 Complete and continue the table.

Representation	Different Representation	Double
	,	Double 1 is 2 $1+1=2$
		Double 2 is \qquad $2+2=$ \qquad
		$\begin{aligned} & \text { Double__ is } \\ & Z_{+}^{+}= \end{aligned}$
		$\begin{aligned} & \text { Double_is_- } \\ & +^{+}{ }^{+=} \end{aligned}$

Make Doubles

Reasoning and Problem Solving

Work out:	Possible answer: Double 3 = 6
Double 3 =	Double $4=8$
Double 4 =	Double $5=10$
Double 5 =	The answer gets two more because
What do you notice? What's the same?	the start number
What's different?	gets two more ones added for
Now try:	example,
Double 2 =	00
Double 4 =	0
Double 8 =	
What do you notice? What's the same?	Double $4=8$
What's different?	Double $8=16$
	The first number doubles and the last number doubles.

Year 2 | Autumn Term | Teaching Guidance

The 2 Times Table

Notes and Guidance

At this stage children should be comfortable with the concept of multiplication so they can apply this to their times tables that they need to be secure with.
Images should be used to encourage children to count in twos as well as number tracks. Resources such as cubes and Numicon are important for children to explore equal groups within the 2 times tables.

Mathematical Talk

If there is $16 p$ in total, how many coins would there be?

How many 2 s go into $16 ?$
How can the images of the 5 bikes help you to solve the problems?

Varied Fluency

1
Count in 2 s to calculate how many eyes there are.

(2) Complete the number track.

| 2 | 4 | | 8 | | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 16 | 18 | | | 24 |
| | 38 | 40 | 42 | 44 | |
| | | | | | |

3 There are 14 wheels, how many bikes are there?

The 2 Times Table

Reasoning and Problem Solving

Fill in the missing boxes.

$$
\begin{aligned}
& 3 \times \square=6 \\
& \square \times 2=20 \\
& 7 \times 2=\square
\end{aligned}
$$

Thomas says that $10 \times 2=22$
Is he correct?
Explain how you know.

2

10

14

No, the answer
should be 20.
Children could
draw an array or a
picture to show
their answer.

Year 2 | Autumn Term | Teaching Guidance

The 5 Times Table

Notes and Guidance

Before this small step, children would have counted in 5s from any given number.

The children would have also been exposed to the 2 times tables.
This small step is focused on the 5 times tables and it is important to include the use of zero. Children should see the $=$ sign at both ends of the calculation to understand what it means.

Mathematical Talk

If there are 30 petals, how many flowers? Can you count in 5 s to 30 ? How many 5 s go into 30 ?

How many 5 s go into 35 ?
What does each symbol mean? Do we need to calculate?

Varied Fluency

(1) How many petals altogether?

Write the calculation.
2 There are 35 fingers. How many hands?

$$
\times 5=35
$$

3 Use $<,>$ or $=$ to make the statements correct.

$$
\begin{aligned}
& 2 \times 5 \bigcirc 5 \times 2 \\
& 3 \times 2 \bigcirc 4 \times 5
\end{aligned}
$$

The 5 Times Table

Reasoning and Problem Solving

The 10 Times Table

Notes and Guidance

Before this small step, children would have counted in 10s from any given number. This small step is focused on the 10 times tables and it is important to include the use of zero. Children should see the $=$ sign at both ends of the calculation to understand what it means.

Mathematical Talk

What if there were 10 packs of crayons?
If there were 50 crayons altogether, how many packets?
How do you know?
How many tens go into 30 ? Can you count in 10 s to 30 ?
What does greater than mean?
What does less than mean?

Varied Fluency

1 How many crayons are there altogether?

Altogether there are 30 bottles, how many walls are there?

Think of a multiplication fact for 10 s to go in each box.

The 10 Times Table

Reasoning and Problem Solving

On sports day, Tom runs 10 metres, 7 times.

Which of the calculations do not describe the word problem?
$10+7$
7×10
$7+7+7+7+7+7+7$
$10+10+10+10+10+10+10$

Explain why.
$10+7$ is incorrect because he has run 10 metres, 7
times
$7+7+7+7+7+$
$7+7$ is incorrect
because he
doesn't run 7
metres. He runs 10 metres.

Some base 10 is hidden.	It could be $5 \times 10=50$ The total is less than 100 $6 \times 10=60$
$7 \times 10=70$ $8 \times 10=80$ $9 \times 10=90$	

Make Equal Groups - Sharing

Notes and Guidance

Children will explore sharing practically by using 1:1 correspondence. To begin with, children need to represent the groups they are sharing into with a physical object or a pictorial representation. For example, share the 12 balls between the two buckets. Share the 12 dots between the two circles.

Children should also be exposed to opportunities where an amount will not share equally.

Mathematical Talk

How can I share the muffins equally?
How many muffins on this plate? How many on this plate? Are they equal? If I had 9 muffins what would happen?

How can I share \qquad between \qquad ?

How can I represent this number story? What do the cubes represent (bananas)? What do the trays represent (boxes)?

Varied Fluency

1 Share the muffins equally between the two plates. Complete the sentence
__ cakes shared equally between 2 is \qquad

2 Use 20 cubes and hoops to represent your friends. Can you share the cubes between 5 friends? 20 shared between 5 equals \qquad Can you share the cubes between 2 friends? 20 shared between 2 equals \qquad Can you share the cubes between 10 friends? 20 shared between 10 equals \qquad
3 Tim has 16 bananas.
He shares them equally between two boxes. Represent and solve the problem.

Make Equal Groups - Sharing

Reasoning and Problem Solving

Make Equal Groups - Sharing

Notes and Guidance

Children divide by sharing to make equal groups using one to one correspondence. They need to do this in practical contexts then pictorially.

Children will be introduced to the \div symbol. They will begin to see the link between division and multiplication.

Mathematical Talk

How many do you have to begin with?
How many equal groups are you sharing between?
How many are in each group?
How do you know that you have shared the objects equally?
\qquad has been shared equally in to \qquad equal groups.
__ groups of \qquad make \qquad

Varied Fluency

1 Practically share the 12 cubes into the two boxes.
There are \qquad cubes altogether.
There are \qquad boxes.
There are \qquad cubes in each box.

Can you share the 12 cubes into 3 boxes?
2 Share 15 beanbags between the 3 hoops.

$$
15 \div 3=\square
$$

Share 12 beanbags between 3 hoops in the same way.

$$
12 \div 3=\square
$$

3 Billy draws this bar model to divide 20 between 4 equal groups.
He writes $20 \div 4=5$

What other number sentences could Billy create using his model?

Make Equal Groups - Sharing

Reasoning and Problem Solving

Make Equal Groups - Grouping

Notes and Guidance

Children start with a given total and make groups of an equal amount. They record their understanding in sentences, not through formal division at this stage.

Children can develop their understanding of equal groups by also being exposed to numbers which do not group equally.

Mathematical Talk

We have __ mittens how many equal groups of 2/5/10 can I make?

What would happen if there were 21 cubes?
Have I got equal groups? Does each group need to look the same for it to be equal still? What makes it equal?

Varied Fluency

1 How many equal groups of 2 can you make with the mittens?

There are | If you had 10 mittens, how many |
| :--- |
| equal groups of 2 mittens could |
| you make? |

2 Take 20 cubes. Complete the sentences.
I can make ___ equal groups of 2
I can make \qquad equal groups of 5
I can make \qquad equal groups of 10

3 Complete the table. Use equipment to help you.

Make Equal Groups - Grouping

Reasoning and Problem Solving

Zeb and Paulo each have the same amount of sweets.	Answer: 10
They each have less than 20 sweets.	Zeb has 5 equal groups of $2=10$
Zeb has 5 equal groups of sweets. Paulo has grouped his sweets in tens.	Paulo has 1 equal group of $10=10$
How many sweets do they each have?	
Look at the different images. What's the same? What's different? a. b. c.	Possible answer: They all equal 10 a is 5 equal groups of 2 b is 2 equal groups of 5 c is 1 equal group of 10

I am thinking of a number between 20 and 30	Answer: 25
I can only make equal groups of 5 with it. What must my number be?	Children can use practical equipment to
What happens when I try make groups of 2 with it?	solve this and discover what happens.
What happens when I try make groups of 10 with it?	If you make equal groups of 2 with it there will be 1 left over. If you make equal groups of 10 with it there will be 5 left over.

Make Equal Groups - Grouping

Notes and Guidance

Children divide by grouping objects into a given amount. They then count on to find the total number of groups.

They need to do this in practical contexts then pictorially.
They need to recognise the link between division, multiplication and repeated addition.

Mathematical Talk

How many do you have to begin with?
How many are in each group?
How many groups do you have?
How long should your number line be?
What will you count up in?
There are \qquad groups of \qquad which make \qquad

Varied Fluency

1 Pencils come in packs of 20 We need to put 5 in each pot How many pots will we need?

There are \qquad pencils altogether.
There are \qquad pencils in each pot.
There are \qquad pots.

2 Mrs Green has 18 sweets.
She puts 3 sweets in each bag. How many bags can she fill?

3 Tim uses a number line to work out how many equal groups of 2 he can make from 12

Use a number line to work out how many equal groups of 5 you can make from 30

Make Equal Groups - Grouping

Reasoning and Problem Solving

You have 30 counters.	10 groups of 3
How many equal groups can you make?	6 groups of 10 groups of 5
Represent you groups as a number	5 groups of 6 sentence.
	15 groups of 15 2

Tom has 5 equal groups.	$30 \div 5=6$
The amount he started with	$25 \div 5=5$
is greater than 10 but less	$20 \div 5=4$
than 35	$15 \div 5=3$
What could he have started with?	
How many will be in each group?	

Divide by 2

Notes and Guidance

Children should be secure with grouping and sharing. They will use this knowledge to help them divide by 2.

They will be secure with representing division as an abstract number sentence using the division and equals symbol.

Children should be able to count in $2 s$ and know their $2 x$ table.

Mathematical Talk

What do you notice when you group these objects into twos?
Is there a link between dividing by 2 and halving?
What is different about sharing into two groups and grouping in twos?

Can we write a multiplication sentences as well as a division sentence? What do you notice?

Varied Fluency

1 Complete the stem sentences.

$$
\begin{aligned}
& \square \div \square=\square \\
& \square \times \square=\square
\end{aligned}
$$

I have \qquad cubes altogether. There are \qquad in each group. There are \qquad groups.

2 Group the socks into pairs.

$$
\begin{array}{r}
\square \times \square=\square
\end{array}
$$

3 Sam and Tom have 12 sweets between them. They share them equally. How many sweets does each child get?
There are \qquad sweets altogether.
There are \qquad groups.
There are \qquad in each group.

Complete the bar model to show this calculation.

Divide by 2

Reasoning and Problem Solving

I have 24 p and divide it between 2 friends. How much will they get each? I have 24 p in 2 pence pieces. How many 2 pence pieces do I have? What is the same and what's different?	The calculation is the same in both. In the first question we are sharing whereas in the second question we are grouping.
Matilda and Charlie share these apples equally. How many apples do they each get? 0000 00000 00000 00000	There are 50 apples in total so Matilda and Charlie will get 25 apples each.

Share 18 counters in two equal groups.

Take another 18 counters and put them
Possible answer:
When we share we get 9 counters in each group, and when we group we get 9 groups of 2

Odd \& Even Numbers

Notes and Guidance

Building on from Year 1, children should be able to recognise odd and even numbers.

They will use concrete manipulatives to understand odd and even numbers and the structure of these.

Mathematical Talk

Can you sort these objects (number pieces, ten frames, cubes, pictures etc) into odd and even?

What makes these odd/even?
Which of these numbers can you share equally between 2 ?
How do you find out if X is an odd or even number?

Varied Fluency

1 Which of the numbers below can be shared equally between 2?
Are the numbers odd or even? Show this in the table.

\qquad numbers can be shared between 2 equally.
\qquad numbers cannot be shared between 2 equally.

2 Which pieces are odd? Explain why. Find or draw another piece.

3 Spot the mistakes.

Odd \& Even Numbers

Reasoning and Problem Solving

True or false?

12 is an odd number.
Prove it.

Bob is counting on the 100 square. Instead of saying the numbers he counts "red, yellow, red, yellow"

What could the red numbers be? Why?
What could the yellow numbers be? Why?

Children can use concrete or pictorial methods to show 12 is divisible by 2 and therefore it's false.

The red numbers are odd numbers and the yellow numbers are even.

Divide by 5

Notes and Guidance

During this step, children focus on efficient strategies and whether they should use grouping or sharing.

They use their knowledge of the five times table to help them divide by 5

They will continue to see the '=' sign at both ends of the calculation.

Mathematical Talk

How can we show the problem using objects/images?
How does knowing your 5 times table help when dividing by 5 ?
Circle all the multiples of 5 on a 100 square. What do you notice about the numbers? Can you explain the pattern? How does this help you to divide these numbers?

When would we count in 5 s?

Varied Fluency

1 Take 20 cubes.
How many towers of 5 can you make?
You can make \qquad towers of 5
\qquad towers of 5 is the same as 20
20 is the same as \qquad towers of 5

240 pencils are shared between 5 children.

How many pencils does each child get?
3 Group the 1 p coins into 5 s . How many 5 p coins do we need to make 20 p?

Draw coins and complete the missing information.

- __ lots of $5 p=20$ one pence coins
- __ lots of $5 p=20 p$
- $20 p=\ldots \times 5 p$
- $20 p \div 5 p=$

Divide by 5

Reasoning and Problem Solving

Sam has less than 50 sweets to share into his party bags.	Sam could have $48,43,38,33,28$, If he puts 5 sweets into each bag and has 3 left over at the end, how many sweets did he have at the start?

Divide by 10

Notes and Guidance

Children will need to be able to multiply by 10 and recognise multiples of 10 . They will need to use both grouping and sharing to divide by 10

Children start to see that grouping and counting in 10 s is more efficient than sharing into 10 equal groups.

Mathematical Talk

What can we use to represent the apples?
How does knowing your 10 times table help you to divide by 10 ?
Circle all multiples of 10 on a hundreds square. What do you notice? Can you explain the pattern?

How many groups of 10 are there in \qquad tens?

Varied Fluency

1 Apples can be sold in packs of 10 How many packs can be made below?
 - 0000000 -00000000

When 30 apples are sold in packs of 10 , \qquad packs of apples can be made.
Can you show this in a bar model?

2. I have 70 p in my pocket in $10 p$ coins. How many coins do I have? Draw a picture to prove your answer.

3 Fill in the missing numbers.

- $70 \div 10=$ \square
- 6 tens $\div 1$ ten $=$ \square
- $5=\square \div 10$
- There are tens in 40

Divide by 10

Reasoning and Problem Solving

Mrs Owen has 80 sweets.
She shares them between 10 tables.
Which calculation describes the word problem?
$>80 \div 10$
$>80-10-10-10-10-10$
$-10-10-10$
$>80-10$

The first one describes the calculation. The second shows 80 subtract 80 and the third shows 80 subtract 10

Orla says,

Who is correct? Explain how you know.

> Orla is correct
> because there are
> 60 cakes and 60
> divided by 10 is 6

Joe has incorrectly grouped the cakes, he might have counted the rows wrong. He hasn't put them in 10 s

