Years 1/2

Small Steps Guidance and Examples

Block 4 - Measurement

WhiteR@seMaths

Year 1 /2- Yearly Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
$\stackrel{C}{E}$	Number: Place Value				Number: Addition and Subtraction				Geomet	y: Shape	Measurement: Money	
	Number: Multiplication and Division (Y1: Place Value to 50 included)				Number: Fractions			Measurement: Length and Height		Measurement: Mass, Capacity and Temperature		
		: Place thin 100 tatistics	Geo Positi Dire	etry: and ion	Pro solvi effi me	lem g and ient ods	Measurement: Time			Investigations		

Overview

Small Steps

Year 1	Year 2
Introduce weight and mass	Compare mass
Measure mass	Measure mass (g)
Compare mass	Measure mass (kg)
Introduce capacity	Compare capacity
Measure capacity	Millilitres
Compare capacity	Litres

Introduce Weight \& Mass

Notes and Guidance

Children are introduced to weight and mass for the first time. They may already have concepts about mass from own personal experience of carrying objects.

The use of balance scales is essential to form an understanding of comparing mass, they should be allowed to pick up and feel the mass of objects before putting them on the scales and seeing what happens.

Mathematical Talk

Hold my two objects, which is heavier/lighter? How do you know? How can we prove this?
If the balance scale is down, what does that tell us?
If the balance scale is up, what does that tell us?
If the balance is level, what does that tell us?
Which of these objects is heavier? How do you know?
Can you predict what the scale will do when I put these two objects on either side of the scale?

Varied Fluency

1 Using balance scales, compare and model how objects around school can be heavier or lighter than others.

Which object is heavier? Which object is lighter? The \square is heavier/lighter than the \qquad
2 Fill in the missing gaps to make the sentences correct.

3 Collect different objects from around your classroom. Use a balance scale to find the heaviest object.
Can you find 2 objects that are equal in mass?

Introduce Weight \& Mass

Reasoning and Problem Solving

Compare Mass

Notes and Guidance

Children recap on Year 1 learning by comparing the mass of different objects. They will initially use balance scales to compare two objects.

Children compare mass using < and > and order objects based on their mass.

Mathematical Talk

Look at the scale, which side is lower? What does this tell us about the objects?

Which object is heavier? Which object is lighter?
Can you predict which object will be heavier?

Varied Fluency

1 Using the words 'more' and 'less' and the >or < symbols, describe the mass.

The lettuce weighs \qquad than the pineapple.

2 Choose three objects. How can you use the balance scales to order them from the heaviest to lightest?

3 Complete the sentences:

Compare Mass

Reasoning and Problem Solving

Measure Mass

Notes and Guidance

Children learn to use non-standard units (e.g. cubes, bricks) to weigh and compare the mass of an object.

Children use a non standard unit and recognise this stays the same to weigh the mass of an object. They use the non standard unit of measure to make the scales balance to work out how much an object weighs. Children learn that a non-standard unit of measure could be any object.

Mathematical Talk

When the scales are balanced, what does this mean? Can anyone think of any symbols we use in maths that are similar?

If I add one more cube to this side, what will happen? How do you know? What if I take a cube away?

What other objects could we use to weigh the mass of something? Which object do you predict will be heavier?

Varied Fluency

1 Use everyday objects e.g. banana, apple, book etc. Using a non standard unit of measure e.g. cubes, bricks etc, investigate how much each object weighs. Use the sentences to describe your investigation.

The object weighs \square cubes/bricks.
I need \square more/less to make the scales balance.

2 Weigh an object e.g. a book, using cubes and then weigh the same object using bricks. What do you notice? Complete the sentence using the words; heavier, lighter, more, less The \square the non standard unit of measure, the \square units are needed.

3 Using other non-standard units, weigh and compare the mass o an object in relation to another object.

For example: 1 peach weighs the same as 4 pencils

Measure Mass

Reasoning and Problem Solving

Measure Mass (g)

Notes and Guidance

In Year 1, children have experienced measuring mass using nonstandard units. In Year 2, they will use gram weights and balance scales before moving on to use standard scales. Children will apply their counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s skills to measuring mass in grams.
Give children the opportunity to feel the mass of gram weights so they can use this to estimate.

Mathematical Talk

What does the balance scale being level tell us?
What symbol could we use? (=)
How much heavier is this object? How could you work it out?
If I add 100 g to the scale, what would the new mass be?

Varied Fluency

1 Using gram weights in multiples of 5 to measure the mass of objects using a balance scale.

The \square weighs \square grams

2 Use scales to record the mass of objects in grams.

3 Order the items from heaviest to lightest.

Measure Mass (g)

Reasoning and Problem Solving

Which is heavier, the red or the green beanbag? Give your reasoning.

The red beanbag weighs more
because it weighs the same as two green beanbags.

Compare Mass

Notes and Guidance

Children continue to use non-standard units to weigh objects and now focus on comparing the mass of two objects. They use balance scales to compare two objects and use the language of 'heavier', lighter' and 'equal'.
Once children are confident using this language they can use < and > to compare mass.

Mathematical Talk

How many cubes weigh the same as \qquad ? Which object is heavier? Which object is lighter?

Which object do you predict will be heavier/lighter?
Can we order the objects from heaviest to largest?
Can I weigh this object with cubes and this object with bricks and order them? Explain why.

Varied Fluency

1 Complete the sentences below.

2 One cake weighs roughly \square cubes.
One pineapple weighs roughly \square cubes. A cake is \square than a pineapple. (heavier/lighter)

Find and weigh 4 objects, finding their mass in cubes.
Order them from lightest to heaviest.
3 Can you order the objects from heaviest to lightest?

Compare Mass

Reasoning and Problem Solving

Look at the balance scales below.

Which statements are true?

- The toy car is heavier than the van.
- The van is heavier than the car.
- The car is lighter than the van.
- The van is lighter than the car.
- The car and van weigh the same amount.

Can you make your own version for your

The car is heavier than the van. The van is lighter than the car.

Measure Mass (kg)

Notes and Guidance

Children use their knowledge of measuring mass in grams to start to measure mass in kilograms.
They apply their counting in 2 s , 5 s and 10 s to measuring mass and reading scales in kilograms.
Give children the opportunity to feel the mass of kilogram weights and real life objects that weigh 1 Kg , so they can use this to estimate.

Mathematical Talk

How much do you think one tin of beans weigh? Explain why you think that.

Which is heavier, one gram or one kilogram?
What else do you think we might measure in kilograms?

Varied Fluency

1 Find the mass of the sweets and the beans.

2 Read the scales to find the mass of each.

The bag weighs \square kg

The person weighs \square kg

3 Sophie's family are going on holiday. At the airport they weigh their suitcases. Compare the weight of their cases.

Measure Mass (kg)

Reasoning and Problem Solving

Which unit would you measure the
objects in?

Grams or Kilograms? | The red beanbag |
| :--- |
| weighs more |
| because it weighs |
| the same as two |
| green beanbags. |

The brown parcel weighs twice as much	The green parcel as the blue parcel.		
The green parcel weighs 22 kg more than		\quad	The blue parcel
:---			
30 kg	\quad	weighs 20 kg	
:---			
The blue parcel weighs 12 kg less than			
the green parcel.		The brown parcel	
:---			
weighs 40 kg	parcel would be on the scale.		

Introduce Capacity

Notes and Guidance

Children are introduced to capacity. They explore the concept in a practical way, using a variety of containers. They compare the volume in a container by describing whether it is full or empty and use 'greater than' and 'less than' to further describe the volume.

Children understand that when a container is full, the capacity is equal to the volume but when the container is empty the capacity is the same but the volume is zero.

Mathematical Talk

Look at my bottle, is it full? Is it empty?
Compare my two bottles, which has more liquid in? Which has less?

How can we show the container is nearly full or nearly empty?
What's the same? What's different? If the container is different can we compare the volume easily? Why?

Varied Fluency

1 Use different containers filled with liquid or rice. Use the words and sentence stems to describe the volume and capacity.

The container is \qquad -.
The amount of liquid in container 1 is \qquad than the amount of liquid in container 2

2 Using a container and rice, show me:

- A full container
- An empty container
- A nearly full container
- A half full container
- A nearly empty container
- More than half full container

3 Match the sentence to the correct image.
The container is full.
The container is empty.
The container is half full.
The container is more than half full.

Introduce Capacity

Reasoning and Problem Solving

Always, Sometimes. Never

The tallest container holds the most liquid.

Identical containers can have a different capacity.

Mary has a full bottle of orange. She fills another container with the orange.

Which has a larger capacity - the bottle or the container? Explain how you know?

Sometimes.

Never. If the containers are identical they will have the same capacity but can have different volumes of liquid in.

The bottle must have a larger capacity because Mary filled the container and the bottle has some orange left over.

Tilly, Ben and Mo are describing their glasses of water.

Various

representations for Tilly's and Mo's as long as they show that Mo's is less than Tilly's and Tilly's is more than half full.

Can you fill in how much water could be in each of the children's glasses?

Label each glass using 'full', ‘empty', 'nearly', 'half full' or 'quarter full'

Compare Capacity

Notes and Guidance

Children build on their understanding from Year 1 to explore the difference between capacity and volume. They use containers to compare capacity and volume and recognise the capacity is the amount of liquid a container can hold and the volume is how much liquid is in the container.

Children use the language 'quarter', 'half' and 'three quarters full'.

Mathematical Talk

Which container has the largest/smallest capacity? Can we order them from largest to smallest?
Can we show the same volume in each container? Does it look the same? Why?
Which container has the more or less liquid in?
How many mugs does it take to fill the bottle? Is this more or less than the pot? Can we find the difference?

Varied Fluency

1 Take three different containers. Using water or rice, which container has the largest capacity? Show me each container where the volume is: quarter full, half full and then three quarters full.

2 Complete the sentences using the words 'less', 'more' or equal'.

$A \quad B$

A B C but \qquad than container B.

3 Complete the sentences:

Use other containers to investigate how many mugs of rice they take to fill.

Compare Capacity

Reasoning and Problem Solving

Steph pours juice from two identical	Glass A has the bottles into two identical glasses.
least juice in and Glass B has more Bottle A juice in. Bottle A has more juice left over which means it has less juice poured out.	
Which glass has the most juice in?	
Explain why.	

Choose different sized containers in your classroom. Measure how much liquid each container can hold. Order your containers from which one can hold the most water to the least. Compare the containers using <, > or $=$

Measure Capacity

Notes and Guidance

Children find the capacity of different containers using non standard units of measure. They understand to measure the capacity of a container the unit of measure must stay the same, for example the same cup, the same spoon etc. They explore the difference between capacity and volume by also measuring how much liquid can fill a container compared to how much liquid is in a container.

Mathematical Talk

How can we measure how much liquid will fill my container? What could I use?

Can I start measuring the capacity with a spoon and then switch to a jug? Why not?

How many bowls of liquid fill the bottle?
How many cups of liquid are in the bottle?
How is this different? How is this the same?

Varied Fluency

1 Take three different containers. Fill each container with liquid or rice using; a spoon, a cup, a large jug.
Discuss which unit of measure will take more/less to fill each container.

2 Choose five different containers from your classroom. Predict which container will have the largest/least capacity.

Using a consistent unit of measure, complete the sentence for each container.

The capacity of the \square is \square units.
3 Measure the volume of liquid in each one using glasses as the unit of measure.

The volume of liquid in the bottle is about \qquad units.
The volume of liquid in the jar is about \qquad units.
The volume of liquid in the bowl is about \square units.

Measure Capacity

Reasoning and Problem Solving

Match the statement to the correct bottle.

A

B
C
D

- The volume of orange is 0 cups.
- The volume of orange is the same as the capacity of the bottle.
- The volume of orange is about 2 cups.
- D
- A
- B
- C
- The volume of orange is more than 2 cups.

Millilitres

Notes and Guidance

Children are introduced to standard units for the first time. They use measuring containers to measure capacity and volume in millilitres.

Once children are secure in using and understanding millilitres as a standard unit they move on to solve problems involving capacity and volume.

Mathematical Talk

Which container has the largest/smallest capacity? Can we order them from largest to smallest?
Look at the scale on my cylinder, what do we notice? Is this the same for this cylinder?
If we pour the liquid from this jar/glass into the cylinder, how much does each container hold?
Can we identify the volume in each cylinder? Which container had more/less liquid in than this?

Varied Fluency

1 Use a variety of different containers with ml clearly labelled e.g. measuring spoon, water bottle, liquid soap, vinegar etc. Introduce that liquid can be measured in millilitres. Show 5 ml using a medicine spoon. Discuss is 5 ml a large or small amount? Look at the containers and identify how many ml each container holds.

2 Show on the measuring jug where the liquid would go to from each container.

The container's capacity is ___ml

3 Use different containers e.g. mug, bowl, pan, tea cup. Fill them with water or rice. Pour them into a measuring cylinder and measure the volume of liquid or rice in the measuring cylinder.

Millilitres

Reasoning and Problem Solving

Gather different sized containers in width and height. Estimate how much is in each container. Record your results in the table:

Glass A has the least juice in and Glass B has more juice in. Bottle A has more juice left over which means it has less juice poured out.

The water in this container does not reach a line exactly.
What is a good approximation?

Explain why.

The water is between 40 ml and 50 ml
It is approximately
45 ml

Year 1 | Spring Term \| Teaching Guidance

Compare Capacity

Notes and Guidance

Children compare the capacity of different containers using non standard units of measure.

They use 'more', 'less' and 'equal' to compare volume and can use the symbols <, > and = once they are confident using the correct language.

Mathematical Talk

Which container has the largest/smallest capacity?
Can we order them from largest to smallest?
Which container has the most or least volume?
Look at these two containers, can we compare them?
Can we show A has more than B but less than C ?

Varied Fluency

1 Take three different containers.
Fill each container with liquid or rice using the same unit of measure e.g. cup.
Which container holds the most? Which container holds the least?
Order the containers from largest to smallest capacity.
2 Use the words 'more' or 'less' to compare the containers.

A has \qquad than B.

A has \qquad than B.

A B
3 Colour in the bottles to show:

- A has more volume than B but less than C .
- C has the same volume as. D.

Compare Capacity

Reasoning and Problem Solving

Circle whether the glasses or bottles hold more in each row:

Jan has a bottle of juice. There is some juice left in the bottle.

The bottle holds exactly three glasses of juice.

Do you agree? Explain why.

I disagree. Jan has filled three glasses exactly but there is still juice left so
she could have
filled more than 3.

Litres

Notes and Guidance

Children are introduced to litres as a standard unit for the first time. They use measuring containers to measure capacity and volume in litres.

Children recognise the difference between measuring in millilitres and litres and when you would use litres to measure liquid opposed to millilitres.

Mathematical Talk

Would you measure in litres or millilitres? Why?
How many litres of water do you think it would take to fill the bath?

How many litres of water do you drink a day?

Varied Fluency

1 Use a variety of different containers with litres clearly labelled e.g. cola bottle, paint bottle, milk etc.

Can we measure these in m ?
Introduce litres and discuss how these are the same but different to millilitres. Identify how many litres fill each container.

2 Show the volume of liquid that is in each cylinder.

- Pour 3 / of water into the cylinder.
- Leave 1 / of cola in the bottle.
- Half of the juice is in the cylinder.

3 Use different containers e.g. bucket, large pan etc. Estimate the capacity of each one. Measure the capacity in litres.

Litres

Reasoning and Problem Solving

Jed has a bucket which has 5 I of water in. He pours 3 and a half /into another bucket. Which sentence is correct?

- There is more in bucket A .
- There is less in bucket A.
- There are equal amounts in each bucket.

Explain why.

There is less in bucket A because there will be 2 and half litres in A but in B there is 3 and half litres.

3 bowls each have more than 20 / of water in but less than $50 l$.
The green bowl has 5 / more than the red bowl.
The blue bowl has 10 / more than the green bowl.
How much could each bowl have in?

The red bowl
could have
between 20 l and
35 /
The green bowl could have between 25 I and 40 l

The blue bowl could have
between 35 / and
$50 /$

Temperature

Notes and Guidance

Children are introduced to temperature, thermometers and the units ${ }^{\circ} \mathrm{C}$ for the first time.
They apply their counting in 2 s , 5 s and 10 s skills when reading different thermometers.

Varied Fluency

1 Take temperatures around the school and complete the following stem sentences.
The temperature in the classroom is \qquad The classroom is \square than the playground.
The difference in temperature between the \square and the
\square
\square \square degrees Celsius.

2 Complete the thermometers to show the temperatures.

3 Compare the temperatures using $<,>$ or $=$

Temperature

Reasoning and Problem Solving

Mollie took the temperature at 12 pm and again at 5 pm There was a difference of $7^{\circ} \mathrm{C}$	Children may give any temperatures that have a difference of 7
What could the temperatures be?	Some children may realise that it starts to get cooler in the evening and therefore make sure there 12pm temperature is always warmer than the 5pm temperature.

| What is the same and what is different |
| :--- | :--- | :--- |
| about the thermometers/temperatures? |\quad| Both |
| :--- |
| thermometers are |
| showing $30^{\circ} \mathrm{C}$ |

