Years 5/6

Small Steps Guidance and Examples

Block 5: Perimeter \& Area

White R厅seMaths

Overview

Small Steps

Year 5	Year 6
Measure perimeter	Shapes - same area
Calculate perimeter	Area and perimeter
Find unknown lengths	
Area of rectangles	Area of a triangle (1)
Area of compound shapes	Area of a triangle (2)
Estimate and approximate area	Area of a parallelogram
	Vhat is volume?

Shapes - Same Area

Notes and Guidance

Children will find and draw rectilinear shapes that have the same area.

Children will use their knowledge of factors to draw rectangles with different areas. They will use their knowledge of factors to then predict the length of sides.

Mathematical Talk

What do we need to know in order to work out the area of a shape?

Why is it useful to know your times tables when calculating area?

Can you have a square with an area of $48 \mathrm{~cm}^{2}$? Why?
How can factors help us draw rectangles with a specific area?

Varied Fluency

1 Sort the shapes into the Carroll diagram.

	Quadrilateral	Not a quadrilateral
Area of $12 \mathrm{~cm}^{2}$		
Area of $16 \mathrm{~cm}^{2}$		

Can you draw an extra shape in each section of the diagram?
2 How many rectangles can you draw with an area of $24 \mathrm{~cm}^{2}$?

What do you notice about the lengths of their sides?

Can you use this information to calculate the lengths of sides for rectangles with an area of $96 \mathrm{~cm}^{2}$?

Shapes - Same Area

Reasoning and Problem Solving

Three children are given the same shape to draw.

Kate says, "The smallest length is 2 cm ." Lucy says, "The area is less than $30 \mathrm{~cm}^{2 "}$ Ash says, "The perimeter is 22 cm ."

What could the shape be?

Possible answer:

Measure Perimeter

Notes and Guidance

Children measure the perimeter of rectilinear shapes on a grid or by measuring with a ruler.
It is important that children measure all the sides of the shape and label them as they work round the shape to ensure they measure accurately.

Mathematical Talk

What rules do I need to remember to ensure I am measuring accurately with a ruler?
How can I make sure I don't miss any sides when measuring the perimeter?
Can I use facts about opposite sides of a rectangle to check if I am accurate with my measuments?

Varied Fluency

(1) Here is a shape drawn on cm^{2} grid. Draw the shape to scale and find the perimeter.

2 Use a ruler to measure the perimeter of the shape.

3 Draw the following shapes to scale and find the perimeter of each shape.
Order them from smallest to greatest

Measure Perimeter

Reasoning and Problem Solving

Investigate the different ways you can make composite rectilinear shapes with a perimeter of 54 cm .

Area and Perimeter

Notes and Guidance

Children should use a formula to work out the area and perimeter of rectilinear shapes.

Children explore that shapes with the same area can have the same or different perimeters.

Mathematical Talk

What is the difference between the area and perimeter of a shape?

How do we work out the area and perimeter of shapes?
Can you show this as a formula?

Can you have 2 rectangles with an area of $36 \mathrm{~cm}^{2}$ but different perimeters?

Varied Fluency

1 Look at the shapes below.

2 Work out the missing values.

100 mm

$$
\text { Area }=? \mathrm{~cm}^{2} \mid 6 \mathrm{~cm}
$$

3 Draw two rectilinear shapes that have an area of $36 \mathrm{~cm}^{2}$ but have a different perimeter.

State what the perimeter of each shape is.

Area and Perimeter

Reasoning and Problem Solving

True or false? Two rectangles with the same perimeter can have different areas.	True e.g. Explain your answer. 5 cm by 3 cm has an area of $15 \mathrm{~cm}^{2}$ and a perimeter of 16 cm.
6 cm by 2 cm has an area of $12 \mathrm{~cm}^{2}$ and a perimeter of 16 cm.	

A farmer has 60 metres of perimeter fencing.

For every $1 \mathrm{~m}^{2}$ he can keep 1 chicken.

How can he arrange his fence so that the enclosed area gives him the greatest area?

The greatest area is created when
the fencing is
arranged into a
15 m by 15 m
square, giving 225
m^{2}

Children may
create rectangles
by increasing one
side by 1 unit and
decreasing one
side by 1 unit e.g.
$16 \mathrm{~m} \times 14 \mathrm{~m}$
$=224 \mathrm{~m}^{2}$
$17 \mathrm{~m} \times 13 \mathrm{~m}$
$=221 \mathrm{~m}^{2}$

Calculate Perimeter

Notes and Guidance

Children calculate the perimeter of rectilinear shapes where they are given all the lengths.
They use their addition skills to calculate the perimeter and use their number bonds to add more efficiently.
Children draw a variety of shapes with the same perimeter.

Mathematical Talk

How can you ensure that you add up the length of every side? Do you have to add them in a specific order, can you look for number bonds to add more efficiently?
Can you work systematically to draw a variety of shapes with the same perimeter?

Varied Fluency

1 Here is a shape drawn on a centimetre squared grid.
Label the length of each side of the shape.

Calculate the perimeter of the shape.

2 Calculate the perimeter of the rectilinear shapes.

3. How many hexagons can you draw with a perimeter of 30cm?

Calculate Perimeter

Reasoning and Problem Solving

Here is a square inside another square.

The perimeter of the inner square is 16 cm The outer square's perimeter is four times the size of the inner square.
What is the length of one side of the outer square?
How do you Know? What do you notice?

Small square $=$ 16 cm

Large square $=$ 64 cm

Length of one of the outer sides is
8 cm , because 64
is a squared number.

Here are two shapes.

Shape A

Stacey says 'The perimeter of shape B must be larger because it has more sides.'

Do you agree with Stacey?
Explain your answer.

Possible

explanation: I do
not agree with
Stacey because
the shapes have
the same
perimeter. Shape
B has the same
length and width
overall as Shape
A, the sides are
just in a different
direction to
make it an
irregular
hexagon.

Finding Unknown Lengths

Notes and Guidance

Children apply their knowledge of measuring and finding perimeter to find unknown lengths.

When calculating perimeter of shapes, encourage children to mark off the sides as they add them up to prevent repetition of counting/omission of sides.

Mathematical Talk

How can you use the sides you do know to calculate the missing lengths?
Can you draw the shape to scale on centimetre squared paper to help you find the unknown lengths?

Varied Fluency

1 Find the perimeter of the shapes.

2 A square and a rectangle both have a perimeter of $24 \mathrm{~cm}^{2}$. Calculate the missing lengths.

3 How many rectangles can you draw where the length and width have a difference of 5 centimetres?
What is the perimeter of each rectangle?

Find Unknown Lengths

Reasoning and Problem Solving

Harry calculates the perimeter of the shape as 20 centimetres.	Harry is incorrect as he has only added up the sides that are labelled. The perimeter of the shape is 40 centimetres.
Is Harry correct?	3 cm

The yellow rectangle has a perimeter of 38 cm .
What is the value of a ?

Area of Rectangles

Notes and Guidance

Children build on previous knowledge in Year 4 by counting squares to find the area. They then move on to using a formula to find the area.

Mathematical Talk

What properties of these shapes do you need to know to help you work this out?
What can you tell me about the sides of a square/rectangle?
How does this help you work out this question?
Show formula for area alongside examples:
Area $=$ length \times width

Varied Fluency

1. How many rectangles can you draw with an area of \square cm^{2} ?

2 What is the area of this shape if:
If each square is 2 cm in length, what is the area of the shape? If each square is 3.5 cm in length, what is the area of the shape?

3 Simon buys a house with a small back garden, which measures $12 \mathrm{~m}^{2}$. His house lies in a row of terraces, all identical. Simon's house lies in a row of 15 terraced houses. What is the total area of the garden space?

Area of Rectangles

Reasoning and Problem Solving

Investigate how many ways you can make different squares and rectangles with the same area of $84 \mathrm{~cm}^{2}$
What strategy did you use?

If you cut off a piece from a shape, you reduce its area and perimeter. True or False?
Draw 2 examples to prove your thinking.

Possible example:

Approximate the area of each shape an then order from largest to smallest.

Each orange square has an area of $24 \mathrm{~cm}^{2}$. Calculate the total orange area. Calculate the blue area.
Calculate the green
area.
What is the total area of the whole shape?

$$
\begin{aligned}
& \text { Answer: } A=3 \mathrm{~cm} \\
& \times 7 \mathrm{~cm}=21 \mathrm{~cm}^{2} \\
& B=8 \mathrm{~cm} \times 8 \mathrm{~cm}= \\
& 64 \mathrm{~cm} \\
& C=3 \mathrm{~cm} \times 19 \mathrm{~cm} \\
& =57 \mathrm{~cm}^{2}
\end{aligned}
$$

Order: B, C, A

Answer: Orange = $48 \mathrm{~cm}^{2}$

Blue $=72 \mathrm{~cm}^{2}$
Green $=24 \mathrm{~cm}^{2}$
Total $=144 \mathrm{~cm}^{2}$

Area of a Triangle (1)

Notes and Guidance

Children will use their previous knowledge of approximating and estimating to work out the area of different triangles by counting.
Children will need to physically annotate to avoid repetition when counting the squares.
Children will begin to see the link between the area of a triangle and the area of a rectangle or square.

Mathematical Talk

How many whole squares can you see?
How many part squares can you see?
What will we do with the parts?
What does approximate mean?
Why will this be useful when working out the area of a triangle?

Varied Fluency

1 How could you calculate the area of each triangle?

Which triangle has the largest area?
2 Calculate the area of the shapes by counting the squares.

What do you notice about the area of the triangle and the area of the rectangle?

3 Find the area of each triangle.

Can you draw and calculate the area of the next triangle in the sequence?

Area of a Triangle (1)

Reasoning and Problem Solving

Simon says the area of this triangle is $13 \mathrm{~cm}^{2}$

Is Simon correct?
If not, work out the correct answer and explain his mistake.

There are 10 whole squares and 5 half squares, therefore the correct answer is $12.5 \mathrm{~cm}^{2}$
Simon has gone wrong because he has worked out that the 5 half squares make 3 whole squares instead of 2 and a half.

What is the same about these two	Both triangles

triangles?
What is different?

Can you create a different right angled triangle with the same area?
have an area of 15
cm^{2}
The triangle on the left is a right angled triangle and the triangle on the right is an isosceles triangle.

Children could draw a triangle with a height of 10 cm and a base of 3 cm , or a height of 15 cm and a base of 2 cm .

Area of Compound Shapes

Notes and Guidance

Children learn to calculate area of compound shapes. They need to apply their previous knowledge of area and the formula used. Children need to have experience of drawing their own shapes in this step.

Mathematical Talk

What formula do we use to find the area?

How can we split the compound shape?

Is there more than one way?
Do we get a different answer if we split the shape differently?

Varied Fluency

1 Find the area of the compound shape: How many ways can we split the compound shape?
Is there more than one way?

Could we multiply $6 \mathrm{~m} \times 6 \mathrm{~m}$ and then subtract $2 \mathrm{~m} \times 3 \mathrm{~m}$?
2 Find the area of the following shapes:

3 Find the area of the following shapes:

Area of Compound Shapes

Reasoning and Problem Solving

Jack has a shape with an area of $36 \mathrm{~cm}^{2}$.

Find 3 possible compound shapes that have an area of $36 \mathrm{~cm}^{2}$.

Possible solution:

Area of a Triangle (2)

Notes and Guidance

Children use their knowledge of finding the area of a rectangle to find the area of a right-angled triangle. They see that a rightangled triangle with the same length and perpendicular height as a rectangle will have an area half the size.
Using the link between the area of a rectangle and a triangle, children will learn and use the formula to calculate the area of a triangle.

Mathematical Talk

What is the relationship between the area of a rectangle and the area of a right-angled triangle?

What is the formula for working out the area of a rectangle or square?

How can you use this formula to work out the area of a rightangled triangle?

Varied Fluency

1 Calculate the area of the triangle by counting the squares. Make the triangle into a rectangle with the same height and width, and calculate the area of the rectangle.
Complete: The area of the triangle is \qquad
 the area of the rectangle.
2 If l represents length and h represents height: Area of a rectangle $=l \times h$
Use this to calculate the area of the rectangle.

What do you need to do to your answer to work out the area of the triangle?
Therefore, what is the formula for the area of a triangle?
3 Calculate the area of the triangles.

Area of a Triangle (2)

Reasoning and Problem Solving

Jade is calculating the area of a right- angled triangle.	Jade is correct as long as the two sides you have
been given are the	
base and the	
height of the	
triangle.	

	Possible answers:
$\text { Area }=54 \mathrm{~cm}^{2}$	Height: 18 cm Base: 6 cm Height: 27 cm Base: 4 cm
What could the length and the height of the triangle be?	Height: 12 cm Base: 9 cm
Is this the only possibility?	
Try to think of at least three ways.	

Area of Irregular Shapes

Notes and Guidance

Children use their knowledge of counting squares to estimate the areas of irregular shapes. They use their knowledge of fractions to estimate how much of a square is covered and combine different part covered squares to give an overall approximate area.

Children need to physically annotate to avoid repetition when counting the squares.

Mathematical Talk

How many whole squares can you see?
How many part squares can you see?
What will we do with the parts?
What does approximate mean?

Varied Fluency

1.

Estimate the area of the pond.
Each square $=1 \mathrm{~m}^{2}$
The answer is 6 whole and 4 parts is this an acceptable answer? What can we do with the parts?

2 If all of the squares are 1 cm in length, which shape has the greatest area?

Is the red shape the greatest because it fills more squares? Why? Why not?
What is the same about each image? What is different about each image?

Each square is \square m^{2} what is the approximate area?

Area of Irregular Shapes

Reasoning and Problem Solving

Draw a circle on $1 \mathrm{~cm}^{2}$ paper. What is the estimated area?
Can you draw a circle that is approximately $20 \mathrm{~cm}^{2}$?

If each square represents $3 \mathrm{~m}^{2}$, what is the approximate area of:

- \quad The lake
- The bunkers
- The fairway
- The rough
- Tree/forest area

Can you construct a 'Pirate Island' to be used as part of a treasure map for a new game? Each square represents $4 \mathrm{~m}^{2}$.
The island must include the following features and be of the given approximate measure:
Circular Island 180m²
Oval Lake $58 \mathrm{~m}^{2}$
Forests with a total area of $63 \mathrm{~m}^{2}$ (can be split over more than one space)
Beaches with a total area of $92 \mathrm{~m}^{2}$ (can be split over more than one space)
Mountains with a total area of $57 \mathrm{~m}^{2}$
Rocky coastline with total area of $25 \mathrm{~m}^{2}$

Area of a Triangle (3)

Notes and Guidance

Children will use their knowledge of working out the area of a right-angled triangle to work out the area of any triangle.

They use the formula, base \times height $\div 2$ to calculate the area of a variety of triangles where different side lengths are given and where more than one triangle make up a shape.

Mathematical Talk

What formula can you use to calculate the area of a triangle?
If there is more than one triangle making up a shape, how can we use the formula to find the area of the whole shape?

How do we know which length tells us the height of the triangle?

Varied Fluency

1 To calculate the height of a triangle, you can use the formula: base \times height $\div 2$
Choose the correct calculation to find the area of the triangle.

2 Calculate the area of the triangle.

How did you calculate the area?
Could you do it another way?

3 Calculate the area of each shape.

Area of a Triangle (3)

Reasoning and Problem Solving

The area of this triangle is $42 \mathrm{~cm}^{2}$
Two children worked out the height. Here are their answers: Jade is correct. She has understood that to work out the missing value she will need to change the triangle into a rectangle by doubling the area. She has then divided the total area by the value she has (7cm) to work out the missing value. Jade: $42 \times 2=84=6 \mathrm{~cm}$ $84 \div 7=12 \mathrm{~cm}$ Who is correct? Explain how you know.

Macey and Lainey are working out the area of this triangle:

Macey says, "To work out the area, you multiply 8 by 8 , then you divide your answer by 2 "

Lainey says, "To work out the area you only need a half of the base, so you multiply 8 by 4 , then divide it by 2 "

Who do you agree with?

Explain your reasoning.

Macey is correct as she has found the area of the square and then divided by 2

Lainey has divided by 2 twice, once on the sides and once on the area of the square.

The area should be $32 \mathrm{~cm}^{2}$

Area of a Parallelogram

Notes and Guidance

Children apply their knowledge of finding the area of a rectangle to find the area of a parallelogram.

Children investigate how they can make a rectangle and a parallelogram using a rectangle and two identical triangles. This will help them understand why the formula to find the area of parallelograms works.

Mathematical Talk

Can you describe a parallelogram?
Can you make a parallelogram in to a rectangle?
What do you notice about the area of a rectangle and a parallelogram?

What formula can you use to work out the area of a parallelogram?

Varied Fluency

1 Work out the approximate area of the parallelogram by counting squares.

2 Here are two quadrilaterals made up of two identical triangles and a square.

- What is the same about the quadrilaterals?
- What's different?
- What is the area of each quadrilateral?

3 Use the formula base \times perpendicular height to calculate the area of the parallelograms.

Area of a Parallelogram

Reasoning and Problem Solving

The base of a flower planter is a parallelogram. The area is greater than $44 \mathrm{~m}^{2}$ but less than $48 \mathrm{~m}^{2}$ What could the dimensions of the base of the flower planter be?	The total area needs to be between $44 \mathrm{~m}^{2}$ and $48 \mathrm{~m}^{2}$ therefore the dimensions could be, e.g. 9 m by 5 m $=45 \mathrm{~m}^{2}$ 6.5 m by 7 m $=45.5 \mathrm{~m}^{2}$ 11 m by 4.2 m $=46.2 \mathrm{~m}^{2}$

Lucy has a piece of fabric in the shape of a parallelogram.

The height of the fabric is 12 m and the base is 18 m .

She cuts the fabric into four equal parallelograms by cutting the base and the height in half.

What is the area of each new parallelogram?

Children could work out the
answer in two
ways:
$12 \mathrm{~m} \times 18 \mathrm{~m}$
$=216 \mathrm{~m}^{2}$
$216 \mathrm{~m}^{2} \div 4$
$=54 \mathrm{~m}^{2}$

OR

They could divide
18 and 12 by 2
first, then do
$9 \mathrm{~m} \times 6 \mathrm{~m}$
$=54 \mathrm{~m}^{2}$

What is Volume?

Notes and Guidance

Children will build on their knowledge of finding the area of two-dimensional shapes to estimate and measure volume by using $1 \mathrm{~cm}^{3}$ blocks to build solid shapes.

Children will become aware of the conservation of volume by building different solids using the same amount of cm^{3} blocks.

Mathematical Talk

What does the word 'volume' mean?

How do we measure and record volume?

Do we always have to count the cubes to work out the volume?
Can you come up with a more efficient method?

Varied Fluency

1 Look at the four solids below. Put the shapes in order based on the number of cubes they are made up of.

If each cube has a volume of $1 \mathrm{~cm}^{3}$, find the volume of each solid.

Do any shapes have the same volume?
2 How would you work out the volume of these shapes?

What is Volume?

Reasoning and Problem Solving

$\left.$| Sam has built a shape that has a volume of
 $12 \mathrm{~cm}^{3}$ | Possible solution: |
| :--- | :--- |
| Using $1 \mathrm{~cm}^{3}$ blocks, build a shape that is: | |
| a) Half the volume of Sam's. | |
| b) Double the volume of Sam's. | |
| c) Three times the volume of Sam's. | |\quad| Lucy has built this solid: |
| :--- |
| Tom has built this solid: | | Lucy is incorrect, |
| :--- |
| both solids have a |
| volume of $10 \mathrm{~cm}^{3}$ | \right\rvert\, | If children struggle |
| :--- |
| to see this, |
| encourage them to |
| build both shapes. |
| Lucy thinks her shape must have the |
| greate volume because it's taller. |
| Explain your answer. |

| Here is one side of a cuboid. | Possible solution: |
| :--- | :--- | :--- |
| What could the volume of the cuboid be? | etc. |
| Investigate with a partner. | |

Volume - Counting Cubes

Notes and Guidance

Children should understand that volume is the 3D space an object takes up.

Children will start by counting cubic units $\left(1 \mathrm{~cm}^{3}\right)$ to find the volume of 3D shapes. They will then use cubes to build their own models and describe the volume of the models they make.

Mathematical Talk

What's the same and what's different between area and volume?

Can you explain how you worked out the volume? What did you visualise?

Varied Fluency

1 If each cube has a volume of $1 \mathrm{~cm}^{3}$, find the volume of each solid.
A

в

2 Calculate the number of cubic units in each shape.

3 If one multilink cube = one cubic unit, make as many models as you can with 12 cubic units.

Volume - Counting Cubes

Reasoning and Problem Solving

Ibrahim says he will need $8 \mathrm{~cm}^{3}$ to build this shape. Aleena is correct because there are $8 \mathrm{~cm}^{3}$ making the shape, then there are an additional 2 $\mathrm{~cm}^{3}$ Whoena says she will need $10 \mathrm{~cm}^{3}$ Explain why.	

Reuben is making cubes using multilink.

He has 64 multilink cubes altogether.

How many cubes could he make?

Reuben could make:

- $1 \times 1 \times 1$
- $2 \times 2 \times 2$
- $3 \times 3 \times 3$
- $4 \times 4 \times 4$

Or a combination
of these such as
two $3 \times 3 \times 3$
cubes, one
$2 \times 2 \times 2$ cube and two $1 \times 1 \times 1$ cubes.

Volume of a Cuboid

Notes and Guidance

Children make links with counting cubic units to understand how to use the formula ($l \times w \times h$) for calculating the volume of cuboids.
Children understand that when using the formula $\mathrm{l} \times \mathrm{w}$ will tell you the area of the base then to calculate the volume of the whole shape, you then need to multiply this by the height.

Mathematical Talk

Can you identify the length, width and height of the cuboid?
If the length of a cuboid is 5 cm and the volume is $100 \mathrm{~cm}^{3}$, what could the width and height of the cuboid be?
What knowledge can I use to help me calculate the missing lengths?

Varied Fluency

1 Complete the sentences for each cuboid.

The length is: \qquad
The width is: \qquad
The height is: \qquad
The area of the base is: \qquad \times \qquad $=$ \qquad

Volume $=$ The area of the base \times \qquad
\qquad
2 What is the volume of a cube with:

- 2 metre edges?
- 160 mm edges?

Give your answers in cm^{3}
3 The volume of the cuboid is $32 \mathrm{~cm}^{3}$
What is the missing height?

Volume of a Cuboid

Reasoning and Problem Solving

